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SUMMARY 

The aim of the TerrA-P project is to implement and validate a new global monitoring system for 
primary production by land ecosystems, comprising dekad composites of gross primary production 
(GPP) and annual composites of above-ground biomass production (ABP) by C3 and C4 plants. Spectral 
reflectance data from Sentinel-3 are envisaged to be used in this system to drive a recently 
developed universal, first-principles light use efficiency model (the ‘P’ model) for GPP.  

This document is version 2.2 of the Algorithm Theoretical Basis Document (ATBD) for these GPP and 
ABP products. It describes the design criteria adopted by TerrA-P for both products based on a user 
survey, and also on a set of scientific requirements that go significantly beyond the current state of 
the art. It includes a brief review of the history of light use efficiency (LUE) models, and summarizes 
the strengths and weaknesses of various existing LUE models including those used operationally. It 
is shown how the P model – with the linear mathematical form of a LUE model – can be derived from 
the standard (non-linear) model of photosynthesis via explicit hypotheses for the environmentally 
induced acclimation of three parameters of the standard model. In comparisons with GPP derived 
from eddy-covariance carbon dioxide (CO2) flux measurements, the P model has been shown to 
achieve comparable accuracy to other LUE models, while requiring fewer parameters to be 
estimated.  

Just one parameter, the intrinsic quantum efficiency of C3 photosynthesis φ0(C3), was calibrated to 
optimize the agreement of modelled and observed GPP across 17 eddy-covariance carbon dioxide 
(CO2) flux measurement sites. The sites were selected for their relatively homogeneous surrounding 
vegetation and long measurement records. ATBD version 2.1 introduced an update to the calibration 
presented in version 1. In the version 2.1 calibration, also shown here, remotely sensed land surface 
temperature (LST) was used as an alternative to site-measured air temperature to provide 
temperature and vapour pressure deficit drivers. This calibration used the same merged input data 
set as in version 1, based on spectral reflectances from SeaWiFS and MERIS, to provide the fraction 
of incident photosynthetically active radiation absorbed by green tissues (fAPAR). Meteorological 
data other than temperature were derived from site measurements as before. The new optimized 
value of φ0(C3) was 0.092, slightly higher than the value presented in version 1 but still within the 
range expected based on leaf-level measurements. This version (2.2) also includes an extension of 
the GPP algorithm in which the Copernicus Soil Water Index has been used, together with an 
independently developed empirical function relating the fractional decrease in GPP to soil moisture, 
to adjust the GPP generated by the P model for drought conditions. 

The model has been applied to data from a larger set of flux measurement sites for validation. Model 
outputs were supplied based on the new calibration, but driven by new and recently available fAPAR 
data for these sites. Model outputs for validation, produced along with ATBD version 2.1, included a 
comprehensive uncertainty propagation scheme which provides time- and location-specific 
uncertainties for modelled GPP. The validation exercise has been carried out independently by the 
UA group, and the results presented in a separate Validation Report. 

ATBD version 2.1 also outlined the development strategy for the ABP product, and summarized the 
validation and benchmarking strategies for both products. This version (2.2) presents empirical 
equations and coefficients to determine the ratio of annual above-ground production to GPP, for 
application in managed and unmanaged forests, non-forest ecosystems, and croplands. The ABP 
product consists of the GPP monitoring system together with functions to determine annual ABP 
from annual GPP, which depend on the ecosystem type and management status, and (in the case of 
forests) on stand age. 
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CHAPTER 1 BACKGROUND OF THE DOCUMENT 

1.1. SCOPE AND OBJECTIVES 

The TerrA-P project aims to implement and validate a new global monitoring system for primary 
production by land ecosystems. The project focuses on gross primary production (GPP) and above-
ground biomass production (ABP), defined as follows: 

Gross primary production is the rate of total carbon 
fixation (photosynthesis) by the ecosystem. This is the 
most fundamental measure of primary production, as 
all other ecosystem functions depend on it. Also, 
thanks to the availability of eddy-covariance flux 
measurements, GPP data are available – at time scales 
from half-hourly up to multi-annual – for some 
hundreds of locations worldwide (albeit with a bias 
towards temperate regions), and for croplands as well 
as for natural and managed ecosystems. 

 

 

Figure 1 (left): schematic illustrating the different 
aspects of primary production. 

Above-ground biomass production is the rate of production of plant matter, excluding roots. This is 
a practically important measure, because this is the production rate of forage for grazing animals; it 
is closely related to the production rate of timber for harvest; and it can be converted (through data 
on the harvest index – the ratio of harvestable yield to ABP – for different crops) to estimates of crop 
yield. There are data on ABP, occasionally at a monthly time scale but more commonly at the annual 
time scale, for many ecosystems, especially crops and managed forests but also for natural 
ecosystems. 

We chose not to focus either on (total) biomass production or on net primary production (NPP), for 
the following reasons: 

Biomass production is the total rate of production of plant matter, including roots. For most crops 
the root production is of less interest than the above-ground production. Even for root crops there 
are data on the harvest index, so ABP can be used to predict harvestable yield by a simple conversion. 
There are some data on BP but in most cases the root production has not been measured directly, 
but rather inferred from above-ground measurements. Inevitably this increases the uncertainty of 
BP data. 

Net primary production is defined as the difference between GPP and plant respiration. Formerly, 
NPP was assumed to equivalent to BP. Most data that claim to be NPP are, in fact, BP. But it is now 
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understood that a fraction of NPP – under some circumstances this can be as much as 20% – is “lost” 
from the plant by other pathways than respiration, in the form of volatile organic compounds (such 
as isoprene and monoterpenes) and/or root exudates, which do not contribute to biomass 
production. Moreover, most published data sets of “NPP” are of poor quality. 
 

The aims of the project will be achieved by using spectral reflectance data from Sentinel-3 as input 
to a recently developed universal, first-principles light use efficiency (LUE) model for GPP, called the 
‘P’ model (for ‘production’). Initial calibration was carried out (and reported in ATBD v1) against GPP 
data derived from eddy-covariance carbon dioxide (CO2) flux measurements at 17 selected sites. This 
calibration used a merged data set from SeaWiFS and MERIS (Global Vegetation Index, GVI) to 
provide the fraction of incident photosynthetically active radiation that is absorbed by green tissues 
(fAPAR), a key input to the P model. The model also requires meteorological data, all of which were 
derived for the initial calibration from direct measurements at the flux sites. The updated calibration 
presented in ATBD v2.1 (and shown here) is based on the same fAPAR data, but remotely sensed 
land surface temperature (LST) data from the Advanced Along-Track Scanning Radiometer (AASTR) 
were used to provide the temperature and vapour pressure deficit drivers for modelled 
photosynthesis. This substitution is desirable theoretically, because LST is expected to be closer to 
the actual temperature of leaves; and practically for the global application, because remotely sensed 
LST is retrieved at a higher spatial resolution than can realistically be achieved by interpolation of 
weather-station or meteorological analysis data. 

The project has developed a prototype processing chain for 10-daily GPP and annual ABP by C3 and 
C4 plants. This includes data quality flags and a specification of per-pixel uncertainties, which has 
been implemented in the creation of model outputs for validation. Validation of the model is 
described in a separate document led by the University of Antwerp group. Validation was based on 
a more extensive data set of GPP, derived from eddy-covariance flux measurements in different 
biomes and climatic regions.  

Annual ABP is derived from annual totals of GPP by applying functions decribing the above-ground 
production efficiency (ABPE), i.e. the ratio of annual ABP to annual GPP. This approach makes it 
possible to account for the large differences in ABPE between forests, non-forest ecosystems and 
crops, the effects of management, and the effect of forest stand age. This version of the ATBD (2.2) 
describes the derivation of these functions, based on data from sites where independent 
measurements of ABP and GPP were available. The ABP scheme (comprising the GPP model and the 
ABPE functions) will be validated by comparison to the most comprehensive available global set of 
quality-controlled data on annual ABP, compiled by the University of Antwerp group. 

1.2. CONTENT OF THE DOCUMENT 

• Chapter 1 describes the background of the document. 
• Chapter 2 describes the criteria adopted for new primary production data products, taking 

into account both the requirements articulated by users, and scientific considerations. 
• Chapter 3 is a selective review of existing approaches to monitoring primary production from 

space, including those currently used operationally. 
• Chapter 4 describes the P model and the proposed manner of its implementation, including 

the approach used to calculate uncertainties; introduces the GPP calibration data set; 
presents the results of the ATBD v2.1 calibration; and demonstrates the application of the 
Copernicus Soil Water Index to modify the GPP product. This chapter also summarizes the 
statistical derivation of the functions for ABPE. 

• Chapter 5 summarizes the approach to validation and benchmarking. 
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CHAPTER 2 CRITERIA FOR NEW PRIMARY PRODUCTION DATA PRODUCTS 

2.1. INTERPRETATION OF USER REQUIREMENTS 

TerrA-P has conducted a survey targeting various potential users of the proposed new products, 
including current users of the Copernicus Global Land Operations Lot1 (CGLOPS-1) of the Copernicus 
Global Land Service. The full details of the survey are described in the Requirements Baseline 
Document. It yielded the following key information for product design. 

The principal products currently in use are MODIS GPP and net primary production (NPP), CGLOPS-1 
dry matter production (DMP) products, and models. The new products should aim to reproduce (at 
least) the functionality of these existing, widely-used products.  

Different users work at different geographic scales, from subnational to global. The new products 
should accordingly be global, gridded products allowing flexibility of application. 

About three-quarters of users surveyed agreed with the proposed strategy to focus on GPP and ABP. 
Some caveats were mentioned, including the fact that GPP cannot be directly derived from flux 
measurements (ecosystem respiration has to be factored out through a ‘partitioning’ method, of 
which there are several that give somewhat different results); and the fact that total biomass 
production (including production below ground) may sometimes be of greater interest than ABP. We 
propose to deal with uncertainty in partitioning by using the range of alternative partitioning 
methods as a measure of uncertainty in observed GPP. For biomass production, however, the paucity 
and low reliability of data on below-ground production argues for maintaining a focus on ABP. We 
note that ABP is quantitatively related to below-ground production by, for example, root crops just 
as it is quantitatively related to above-ground production by grain crops. 

Users were approximately equally divided in their preferences for units of dry matter versus carbon. 
For maximum comparability with existing products, and with the main data sources for each 
quantity, we propose supplying GPP in carbon units and ABP in dry matter units. Climate modellers 
preferred carbon units, but are likely to be more interested in 10-daily GPP than annual ABP. 

Most users saw the need to consider C3 versus C4 photosynthesis but, not surprisingly, there was no 
specific proposal as to how the prevalence of the two pathways could be specified on a per-pixel 
basis. We propose to circumvent this problem by providing both as alternatives for every pixel. 

Most users asked for a data quality layer, and information on uncertainty. A per-pixel uncertainty 
layer was not explicitly requested. However, a numbers of users in different ways indicated a need 
for quantitative, per-pixel uncertainty information. In our view a systematic approach to per-pixel 
uncertainty should be a significant part of product development, and would satisfy this need. 

The most popular sampling frequency was 10-daily. A number of users voted for daily, but daily data 
on spectral reflectances are not meaningful because many dates, in most locations, will be affected 
by clouds. This problem can be largely circumvented by providing 10-daily composites. Most users 
asked for data availability in near-real time, that is, 3 to 5 days after acquisition.  

The preferred spatial resolution is 300 m. Some users work with coarser resolutions which, however, 
can be readily obtained by post-processing of a 300 m product.  
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The average request in terms of relative accuracy was close to 20%, which likely provides a realistic 
target accuracy for both 10-daily GPP and annual ABP. 

Table 1 summarizes the user requirements, and the specifications adopted that are consistent with 
these requirements as far as is technically feasible. 

Table 1: Summary of user requirements and specifications adopted for TerrA-P products. 

User requirement Specification adopted 

Geographic scale subnational to global Global gridded product 

Focus on GPP and ABP Focus on GBP and ABP 

Carbon or dry-matter units Carbon for GPP, dry matter for ABP 

Distinction of C3 and C4 photosynthesis Provide results for both C3 and C4 plants 

Data quality layer, information on uncertainty Provide per-pixel uncertainty estimates 

Daily to 10-daily sampling frequency 10-daily sampling frequency 

Data availability in near-real time Data available 3-5 days after acquisition 

Spatial resolution 300 m or coarser 300 m grid with facility for post-processing 

Relative accuracy ca 20% Target relative accuracy 20% 

2.2. SCIENTIFIC REQUIREMENTS 

A priori we determined that new products should as far as possible possible satisfy a number of 
additional criteria, summarized here. These requirements go significantly beyond the current state 
of the art in LUE-based modelling. 

Explicit relationship to the standard model of photosynthesis. The Farquhar, von Caemmerer and 
Berry (1980) (FvCB) model is the standard model of C3 photosynthesis (von Caemmerer, 2000), and 
modifications exist to describe C4 photosynthesis. There are thousands of published field 
measurements of the parameters defined in the FcVB model. All current ecophysiological theory, 
and the great majority of biophysical land-surface schemes for climate modelling, make use of the 
FvCB model. Therefore, a newly developed remotely sensed GPP product should be explicitly defined 
in terms of the FvCB model.  

There is no such general model for plant respiration and other carbon “losses” from GPP. Thus 
models for biomass production should be based on GPP, with modifications to account for these 
losses as fractions of GPP. 

Representation of physiological effects of CO2. Models based on remotely sensed data, including 
those in operational use, generally do not consider the effect of changing atmospheric CO2 
concentration on the LUE of photosynthesis. Thus, they only consider a CO2 effect in so far as it is 
manifested by changes in foliage cover that can be seen from space. As a direct consequence, 
products such as MODIS GPP and NPP severely underestimate the generally increasing trend in 
primary production due to rising CO2 (De Kauwe et al., 2016a). Newly developed products should 
explicitly include the effect of CO2 concentration on LUE. 

No discontinuities at biome boundaries. Although the convention of defining different model 
parameter values per biome is entrenched in remote sensing applications, it inevitably leads to 
discontinuities at boundaries defined by an external classification. This is a highly undesirable 
property, because biomes intergrade. Imposed biome boundaries are arbitrary and differently 
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located according to different land cover products. New products should attempt to avoid such 
discontinuities. 

A demonstrated level of accuracy assessed by comparison to relevant measurements. Eddy-
covariance measurements of CO2 flux can be processed (‘partitioned’) to yield estimates of daily, 10-
daily, monthly or annual GPP. Flux measurement sites vary in public availability status, and in the 
length of records. Some sites are more suitable than others for model calibration and validation, 
because in areas of complex terrain or land use patterns there can be a severe problem in attempting 
to match remotely sensed spectral reflectance data with the (time-varying) footprint of the flux 
tower. Thus, model calibration and validation should be based on an informed selection of flux 
measurement sites. 
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CHAPTER 3 REVIEW OF SELECTED EXISTING APPROACHES 

3.1. BACKGROUND AND HISTORY 

The basis for nearly all algorithms designed to calculate primary production based on remotely 
sensed data is the general LUE model first proposed by Monteith (1972, 1977). Monteith based this 
model on field measurements of crop growth in both tropical and temperate climates, showing that 
growth is proportional to the time-integral of the light absorbed by the crop.  

The general LUE model can be applied either to GPP or to NPP. More formally, in a remote sensing 
context, the general LUE model states that primary production is proportional to the product of 
incident photosynthetic photon flux density (PPFD) and fractional green vegetation cover, also called 
fractional absorbed photosynthetically active radiation (fAPAR or FPAR). fAPAR depends on Leaf Area 
Index (LAI) but is closer to actual reflectance measurements than LAI, and more directly related to 
primary production. In the remote sensing literature, incident PPFD (μmol m–2 s–1) is more often 
described as ‘incident photosynthetically active radiation’ (IPAR) (W m–2). The former term is more 
accurate because photosynthesis depends on the number of photons absorbed, rather than their 
energy (which varies with their wavelength). However, the two units can be interconverted, if it is 
assumed that the solar spectrum is constant. 

NPP is the remainder of GPP after autotrophic (plant) respiration has converted approximately half 
of GPP back to CO2. Traditionally, NPP has been regarded as synonymous with biomass production, 
i.e. the production of plant tissues. However, it is now recognized that a fraction (which can be as 
much as 20%) of NPP is lost from plants in the form of exudation from roots (a carbon subsidy to 
microbes in the rhizosphere, which enables plants to increase their uptake of soil nutrients) and 
emissions of volatile organic compounds (VOCs) such as isoprene and monoterpenes from leaves 
(which confer protection against both oxidants, including ozone, and high leaf temperatures). We 
therefore make a distinction between NPP and biomass production. The latter is of greater interest 
than NPP sensu stricto to users in forestry and agriculture. 

Pioneering examples of remotely sensed primary production models are the Simple Diagnostic 
Biosphere Model (SDBM) of Knorr and Heimann (1995), the Carnegie-Ames-Stanford Approach 
(CASA) model of Potter et al. (1993), and the Global Production Efficiency Model (GLO-PEM) of Prince 
and Goward (1995). These models used spectral reflectance data from the Advanced Very High 
Resolution Radiometer (AVHRR) to infer fAPAR. A constant maximum LUE was specified, then 
reduced by scalars representing aspects of temperature and moisture conditions that can reduce 
LUE. The SDBM was combined with an atmospheric tracer transport model and deployed in an 
inverse mode, using observations of the seasonal cycle of atmospheric CO2 concentration at different 
latitudes to estimate a single global maximum value for the LUE of NPP, and a single global Q10 value 
to quantify the dependence of soil organic matter decomposition on temperature. In GLO-PEM, 
theoretical maximum LUE values for GPP were determined based on the FvCB model. One value was 
assigned for C3 plants and another for C4 plants. These values were modified following the FvCB 
model’s estimation of photorespiratory carbon loss as a function of temperature. GLO-PEM also 
made use of a number of other remote-sensing approaches to estimate meteorological variables, 
including IPAR. Unusually, this modelling approach – further developed by Goetz et al. (1999) – aimed 
to derive all required meteorological and biophysical variables from remotely sensed platforms.  
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The Physiological Principles Predicting Growth (3-PG) model of Landsberg and Waring (1997) is also 
an LUE model and can be driven by remotely sensed and meteorological data. This model, focused 
on forest production, makes a number of empirically well-supported simplifications to predict GPP, 
NPP and forest growth.  

All of the models discussed so far included an estimate of soil moisture availability as one of the 
factors reducing LUE.  

In the following subsections, we review the principal literature on LUE models and note the key 
features of various widely used models, including those used operationally, and some other models 
that have introduced potentially useful innovations. 

3.2. THE MODIS GPP AND NPP PRODUCTS 

By far the most widely used remotely sensed primary production data products for scientific 
applications today are the MODIS GPP and NPP (MOD17) products (Running et al., 2004; Zhao et al., 
2005). The most recent (2015) user’s guide to the MOD17 products can be found at: 
http://www.ntsg.umt.edu/sites/ntsg.umt.edu/files/modis/MOD17UsersGuide2015_v3.pdf 
MODIS GPP specifies a maximum LUE which varies per biome. This value is multiplied by two scalars 
formulated as ramp functions: a linearly declining function of daily vapour pressure deficit (vpd), 
between biome-specific limit values where the function equals one or zero, and a linearly increasing 
function of daily minimum temperature, between biome-specific limit values where the function 
equals zero or one. Soil moisture effects are not considered: thus implicitly, soil moisture effects are 
considered to be accounted for in the remotely sensed fAPAR, and/or the effect of vpd on 
photosynthesis. The calculations make use of a land-cover classification and a Biome Parameter 
Look-Up Table (BPLUT) which recognizes 10 biomes. The required meteorological data, including 
IPAR (incoming solar shortwave radiation multiplied by 0.45), are supplied by the Global Modeling 
and Assimilation Office (GMAO) of the US National Aeronautics and Space Administration (NASA) at 
a 1˚ x 1.25˚ grid resolution. These data are smoothly interpolated to the finer (1 km) spatial resolution 
of the remotely sensed fAPAR data. The spatial and temporal resolution (8 days) of the product are 
set by the fAPAR data, which are obtained from the MODIS FPAR/LAI product.  

Biome-specific model parameter values for MODIS GPP were based on literature-derived estimates 
used in the process-based BIOME-Biogeochemical Cycles model (BIOME-BGC: Running and Hunt, 
1993). Thus, CO2 flux data were not used in the initial calibration of the remote-sensing based model. 
However, the MODIS GPP product has been very extensively and independently evaluated by 
comparison with GPP derived from flux measurements. A number of these evaluation studies are 
cited in the user guide. Verma et al. (2014) included MODIS GPP – and also a version called MOD17-
Tower, which was pre-calibrated against flux measurements – in a systematic global comparison with 
flux data-derived GPP. MODIS GPP was included in the set of seven LUE models compared globally 
with flux data-derived GPP by Yuan et al. (2014). Tang et al. (2015) undertook a comprehensive 
evaluation of MODIS GPP against flux data-derived GPP for forest ecosystems. Tagesson et al. (2017) 
showed that MODIS GPP greatly underestimates flux data-derived GPP in the Sahel, apparently due 
to unrealistically low maximum LUE assigned to semi-arid ecosystems. 

The approach taken in the MODIS NPP product to derive NPP from GPP relies on separately modelling 
autotrophic respiration, which is separated into maintenance and growth components. NPP is then 
the difference between modelled GPP and modelled total autotrophic respiration. Maintenance 
respiration in the model depends on leaf area index (LAI), obtained from the MODIS FPAR/LAI 
product, and biome-specific values of specific leaf area, the ratio of fine root mass to leaf mass, base 

http://www.ntsg.umt.edu/sites/ntsg.umt.edu/files/modis/MOD17UsersGuide2015_v3.pdf
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maintenance respiration rates for leaves and fine roots, and a Q10 value that specifies the steepness 
of an assumed exponential relationship to temperature. In the current version of MODIS NPP, the 
Q10 of leaf maintenance respiration is a decreasing function of growth temperature. This is said to 
reflect respiratory acclimation, although Medlyn (2011) pointed out that the use of this function in 
fact further steepens the modelled negative response of NPP to temperature. Other components of 
maintenance respiration assume a fixed Q10. Additional biome-specific information is used to infer 
annual growth respiration, which is then combined with annually integrated estimates of GPP and 
autotrophic respiration to yield annual NPP. Evaluation of NPP is considerably more difficult than 
evaluation of GPP, as the available data are far more limited. A number of compilations of annual 
NPP measurements have been made, however, and these have been used as a benchmark for MODIS 
NPP. 

The MODIS GPP and NPP products were the first global and widely disseminated products of their 
kind. They represented a major technical advance, and now underpin a large number of high-profile 
scientific publications. However, criticisms have been made of some recent studies in which key 
assumptions underlying these products were overlooked. The study by Zhao and Running (2010) for 
example was criticized by Samanta et al. (2011) and Medlyn (2011), as the decline in NPP during the 
2000 to 2009 period reported by Zhao and Running (2010) was not present in the remotely sensed 
data. It was, instead, a consequence of the high sensitivity of maintenance respiration to 
temperature in the model. Prentice (2013) noted that this sensitivity must be too high, because the 
interannual variability of MODIS NPP is so large as to fully account for the observed year-to-year 
variability of the atmospheric CO2 growth rate – allowing no room for the effect of temperature 
variability on the soil decomposition rate, which is generally understood to be the key factor 
modulating the CO2 growth rate (e.g. Wenzel et al., 2014).  

Another emerging problem is the weak increase over time shown in the MODIS GPP and NPP 
products. This weak trend contrasts with the strong increases shown by most process-based models 
(Anav et al., 2015), the attribution of increasing measured GPP at flux sites to rising CO2 (Fernández-
Martínez et al., 2017), and the evidence for increasing LUE as the principal driver of a large 
amplification of the high-latitude seasonal cycle of atmospheric CO2 (Graven et al., 2013; Wenzel et 
al., 2016; Thomas et al., 2017).  

In process-based models, GPP and NPP increase primarily as a consequence of the rising atmospheric 
CO2 concentration. Smith et al. (2016) asserted that process-based models overestimate the 
stimulatory effect of rising CO2 concentrations on NPP. They reached this conclusion by comparing 
process-based model outputs with the much weaker trend shown by MODIS NPP. However, MODIS 
GPP and NPP do not allow CO2 concentration to influence LUE; therefore, the only possible CO2 
influence in these models is via increasing fAPAR. There is a worldwide ‘greening’ trend which has 
been attributed in part to the effect of CO2 in increasing NPP and water use efficiency (Donohue et 
al., 2013; Ukkola et al., 2015; Zhu et al., 2016). But Free Air Carbon Enrichment (FACE) experiments 
have shown that the principal effect of enhanced CO2 on primary production in forests is through 
increased LUE, whereas increased LAI or fAPAR are much less important. Thus, the discrepancy noted 
by Smith et al. (2016) does not mean that process-based models overestimate the effect of CO2 on 
NPP. Instead it means that MODIS NPP underestimates this effect (De Kauwe et al., 2016a), as a 
consequence of its design. 

3.3. C-FIX AND THE DRY MATTER PRODUCTIVITY PRODUCT 

Veroustraete et al. (1994, 2002) introduced the C-Fix model, a pioneer effort and the forerunner of 
the present-day Dry Matter Productivity (DMP) algorithm (Swinnen et al., 2015) currently provided 
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by CGLOPS1. The original version of C-Fix was a LUE model for GPP in which a maximum LUE (a single 
global value) was reduced through multiplication by scalars representing the effects of suboptimal 
temperature and water availability. Values for NPP were obtained from GPP using an empirical linear 
function of temperature to account for the fraction of GPP lost to autotrophic respiration.  

C-Fix also included an attempt to account for an effect of rising atmospheric CO2 concentration on 
photosynthesis via the FvCB model. However, the effect was implemented by way of the CO2-
dependence of the Rubisco-limited rate of photosynthesis, which is nearly always the rate that is 
measured when leaves are subjected to saturating light intensity (De Kauwe et al., 2016b). This rate 
depends steeply on CO2. But it is not the rate actually realized in the field, at lower average light 
intensity. Under typical daytime field conditions the light- and Rubisco-limited rates are 
approximately equal (Maire et al., 2012). The light-limited rate depends on CO2 as well, but less 
steeply than the Rubisco-limited rate. The original CO2 response function in C-Fix therefore 
presumably overestimates the effect of CO2 on GPP. However this overestimation may be tempered 
by the fact that no distinction is made between leaf-internal and ambient CO2. The steepness of the 
response is thereby less than it would have been if leaf-internal CO2 had been used.  

Another limitation of C-Fix is its assumption of a universal, strongly peaked response of GPP to 
temperature with an optimum around 22˚C – thus not accounting for thermal acclimation, and 
necessarily underestimating GPP in hot climates. But C-Fix was designed for use in temperate forests 
and has in fact only been applied in temperate regions. Veroustraete et al. (2002) successfully 
compared C-Fix GPP predictions with flux data from forests in different regions of Europe. 

C-Fix was not deployed operationally, but it provided the initial basis for the present operational 
DMP product (Swinnen et al., 2015). In DMP, IPAR is determined from solar shortwave radiation by 
applying a factor 0.48, and APAR is obtained by multiplying IPAR by a remotely sensed estimate of 
fAPAR, as in other models. Daily meteorological data supplied by the European Centre for Medium 
range Weather Forecasts (ECMWF) on a 0.25˚ grid are bilinearly interpolated to the remote-sensing 
pixels. A single global maximum value is assigned to the maximum LUE. This is modified by a 
temperature function and (for NPP) a further temperature function. These two functions are 
unchanged from C-Fix. Production is therefore likely to be underestimated in hot climates, due to 
the ‘temperate’ location of the peak of the temperature response function for LUE. There is no effect 
of water availability (apart from that manifested in changes in fAPAR) and the CO2 response of C-Fix 
is not implemented. C4 photosynthesis is not distinguished.  

3.4. SOME RECENT DEVELOPMENTS AND TRENDS 

Numerous LUE models have been developed in recent years with the expressed intention of 
achieving improved consistency with CO2 flux-based measurements of GPP. These measurements, 
when suitably analysed, can provide more information about the controls of LUE than is utilized in 
an ‘end-of-pipe’ comparison of modelled and measured values of GPP.  

The EC-LUE model (Yuan et al., 2007) requires only four quantities as input: fAPAR (which is 
estimated from the Normalized Difference Vegetation Index, NDVI), IPAR, air temperature and the 
Bowen ratio, which was inferred from other remotely sensed measurements (Yuan et al., 2007). In a 
later version the Bowen ratio was replaced by the ratio of actual evapotranspiration to net radiation 
(Yuan et al., 2010), which proved to be more robustly estimated than the Bowen ratio. EC-LUE has 
the merit of simplicity, as well as outperforming MODIS GPP in comparisons with flux measurements.  
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Further innovations in recent LUE models include consideration of seasonal variations in maximum 
LUE (Garbulsky et al., 2010; Lin et al., 2017), accounting for thermal acclimation (McCallum et al., 
2013), the inclusion of an effect of diffuse light fraction on LUE (Donohue et al., 2014), and the use 
of a MODIS canopy conductance product to include effects of vpd and soil moisture availability 
(Yebra et al., 2015).   

These various recent model developments differ in the extent to which they achieve good empirical 
results by increasing complexity and adding to the number of unknown parameters, versus the 
alternative of trying to make modelling more robust through the application of theory that can often 
simplify models and reduce the number of unknown parameters. McCallum et al. (2009), for 
example, argued for the inclusion of all of those processes that have been shown to improve model 
performance. An opposite view (Prentice et al., 2015) is that this is a flawed approach that tends 
always to increase uncertainty, rather than to reduce it, as the number of parameters increases and 
the transparency of the model decreases. 

3.5. THE SCARF MODEL 

Ogutu et al. (2013) introduced the Southampton Carbon Flux (SCARF) model, a new LUE model with 
a number of specific advantages for potential operational use. First, the remote sensing data used to 
drive the model are the MERIS Total Chlorophyll Index (MTCI). MTCI was considered by Ogutu et al. 
(2013) to offer an improvement over more standard ‘greenness’ measures as it explicitly relates to 
the abundance of green, photosynthesizing tissues. They argued that other measures of fAPAR used 
in LUE models include light absorption by non-green tissues that do not contribute to GPP. Second, 
the model substantially avoids spatial discontinuities and the use of a look-up table for biome-
specific parameters by (a) adopting universal intrinsic quantum efficiency values defined in terms of 
the FvCB model for C3 and C4 plants respectively, and (b) applying universal temperature and CO2 
response functions for C3 plants, and vpd response functions for C3 and C4 plants. The CO2 and 
temperature response functions for C3 plants were derived from the FcVB model, but an empirical 
formulation was used for the vpd response functions. A look-up table (together with a number of 
simplifying assumptions) was used to estimate the fraction of C3 versus C4 photosynthesis on a per-
pixel basis. The model was evaluated successfully against GPP data derived from flux measurements 
across Europe and the USA.  

Ogutu and Dash (2013) showed that the fidelity of flux measurements to the FvCB model at two 
study sites was close enough that reasonable estimates of ‘green’ fAPAR could be obtained by 
inversion of the model, i.e. estimating the fAPAR required to produce the observed patterns of GPP. 
This finding strongly supports the notion that LUE models could avoid the need for multiple unknown 
parameters (including the need for look-up tables for vegetation types, apart from the issue of C3 
versus C4 photosynthesis) through application of the FvCB model. 

3.6. THE BESS MODEL 

The Breathing Earth System Simulator (BESS) by Ryu et al. (2011) represents an advanced modelling 
system for GPP and evapotranspiration (ET) and included many novel features. The model was 
designed to be the ‘first system that harmonizes and utilizes MODIS Atmosphere and Land products 
on the same projection and spatial resolution over the global land’ (Ryu et al., 2011, p. 1), thereby 
utilizing remotely sensed solar radiation and other meteorological data (from MODIS) and avoiding 
the need to interpolate such data from a coarse spatial grid. The model was described as calibration-
free, that is, no parameters were to be estimated from flux data; all were to be specified 
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independently. A global selection of 33 flux measurement sites was used to independently evaluate 
the model’s predictions of both GPP and ET. 

BESS is more complex than any of the other models discussed in this review. It includes an explicit 
radiative transfer model for solar radiation in the canopy; a ‘two-leaf’ model that distinguishes the 
properties of sun and shade leaves, which has been claimed to provide better accuracy, especially in 
modelling the differential penetration of diffuse versus direct light into the canopy and the 
consequences for photosynthesis; consideration of foliar clumping effects on photosynthetic light 
absorption (making use of a satellite-derived foliar clumping index product); and an extended FvCB 
model, including light-, Rubisco- and triose phosphate utilization-limited rates of photosynthesis. 
However, this complexity comes at a considerable cost, both computational, and in terms of data 
availability.  

The model was set up on the Microsoft Azure cloud computing system, as it was considered to be 
infeasible on the supercomputing resources available at Berkeley. Many compromises were 
unavoidably made. A look-up table was used to provide values of many parameters, including the 
carboxylation capacity (Vcmax) over much of the Earth’s surface. For some biomes Vcmax was estimated 
from foliage N, which in turn was estimated from vegetation albedo – this approach relying on the 
(questionable) relationship between foliar N and Vcmax. The ratio of leaf-internal to ambient CO2 was 
set at constant values for C3 and C4 plants respectively, thus disregarding the well-established effect 
of vpd on this ratio. Some external data, not available from MODIS, were obtained from a coarsely 
gridded re-analysis product. Thus, although BESS includes many advanced features and the ideal of 
obtaining all required information from remote sensing remains worth pursuing, this ideal was not 
in fact realized. This approach does not appear to provide a useful way forward for the development 
of operational systems at the present time. 
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CHAPTER 4 THE P MODEL: DESCRIPTION OF THE PROPOSED METHOD 

4.1. THE P MODEL 

The P model is fully derived and described by Wang et al. (2017a). Aspects of the underlying theory 
have been applied by Keenan et al. (2016), Wang et al. (2017b) and Smith et al. (in press). Unlike any 
of the LUE models discussed above, the P model possesses all of the following desirable attributes 
for a ‘next-generation’ primary production monitoring system: 

• An explicit derivation from the FvCB model, and a clear relationship to a well-established 
functional form for stomatal behaviour – both elements required for a prediction of GPP. 

• A representation of physiological CO2 effects on photosynthesis that is consistent with both 
the FvCB model and results from FACE experiments. 

• No distinctions among plant functional types and biomes (except for the difference between 
C3 and C4 plants), eliminating the need for spatial discontinuities induced by the use of a 
land-cover classification and look-up table. 

• Demonstrated success in representing flux-derived GPP across different biomes at monthly 
time scales. 

The model is extremely parameter-sparse, while achieving a fidelity to data comparable with or 
better than other models. This combination of simplicity with accuracy has been achieved through 
the development of theory that accounts for the observed environmental dependencies of the ratio 
(henceforth termed χ) of the leaf-internal (ci) to ambient (ca) partial pressures of CO2 in C3 plants; 
and the acclimation of photosynthetic parameters in space and time. Both aspects of the theory rely 
on eco-evolutionary optimality concepts to derive testable hypotheses, which in turn yield good 
agreement with observations from field measurements and field experiments. 

4.1.1. PREDICTING χ WITH THE LEAST-COST HYPOTHESIS 

Prentice et al. (2014) tested a quantitative theory based on a hypothesis first proposed by Wright et 
al. (2004), that plants should minimize the sum of the unit costs (per unit of carbon assimilation) of 
maintaining the capacities for carboxylation (proportional to Vcmax) and water transport (proportional 
to the maximum rate of transpiration). Transpiration is a requirement for photosynthesis because 
stomata have to open to allow CO2 to diffuse towards the chloroplasts. In so doing, they draw water 
from the soil to replenish that lost by evaporation through the stomata. Prentice et al. (2014) showed 
that this ‘least-cost’ criterion leads to an optimal value of χ as a function of environmental variables 
(temperature and vpd) that is independent of PPFD and almost independent of ca. This value is given 
by: 

χ  =  Γ*/ca  +  (1 – Γ*/ca ) ξ/(ξ + √D),          (1a) 

ξ  =  √{β(Κ + Γ*)/1.6η*}            (1b) 

where Γ* and K are respectively the photorespiratory compensation point and the effective 
Michaelis-Menten coefficient of Rubisco (both known functions of temperature and atmospheric 
pressure), β is an empirical constant (estimated from δ13C data: Wang et al., 2017a), η* is the 
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viscosity of water relative to its value at 25˚C (a known function of temperature), and D is the vpd. 
As Γ* << ca under field conditions, and K >> Γ*, equation (1) is well approximated by: 

χ  =  ξ/(ξ + √D)             (2a) 

ξ  =  √{βΚ/1.6η*}             (2b) 

Equation (2a) is mathematically identical with the ‘universal stomatal model’ proposed by Medlyn et 
al. (2011) and tested against a globally distributed set of gas-exchange measurements by Lin et al. 
(2012). Lin et al. (2012) also showed that ξ (there called g1) increases approximately exponentially 
with temperature. This was predicted by Medlyn et al. (2011). It is also predicted by equation (2b), 
because of the strong temperature dependencies of both Κ (increasing) and η* (decreasing). 

Wang et al. (2017a, b) noted that the optimal value of χ should also depend on elevation, acting 
through the effects of changing atmospheric pressure on the partial pressures of both oxygen, which 
competes with CO2 for the Rubisco catalytic sites, and water vapour. Wang et al. (2017a) used a large 
data set of leaf stable carbon isotope (δ13C) measurements to show that all three environmental 
dependencies are correctly predicted by the model. The predicted partial derivatives of ln χ/(1 – χ) 
are 0.055 K—1 for temperature, –0.5 for ln vpd, and –0.08 km—1 for elevation. These partial derivatives 
were independently estimated from the δ13C data by multiple linear regression, yielding 95% 
confidence intervals that include the predicted values: (0.046, 0.058) for temperature, (–0.61, –0.48) 
for ln vpd, and (–0.13, –0.08) for elevation. 

4.1.2. PREDICTING GPP WITH THE CO-ORDINATION HYPOTHESIS 

Wang et al. (2017a) also applied the co-ordination hypothesis, which proposes that acclimation (on 
time scales of weeks to months) should tend to equality of Rubisco- and light-limited photosynthetic 
rates. This long-standing idea is well supported by independent studies (Haxeltine and Prentice, 
1996; Dewar, 1996; Maire et al., 2012; Togashi et al., 2018) and has a number of implications that 
are useful for modelling. These include a simple method to predict the spatial and temporal 
acclimation of Vcmax as a function of IPAR and temperature, meaning that Vcmax does not have to be 
specified independently (Smith et al., in press). A variant of this principle is already included in the 
widely used Lund-Potsdam-Jena (LPJ) dynamic global vegetation model (Sitch et al., 2003) and 
models derived from LPJ, including the LPX global carbon cycle model (Stocker et al., 2013), although 
its implications have not been much explored by the users of these models. 

Wang et al. (2017a) further showed that a cost-benefit analysis of the maximum electron transport 
capacity Jmax – which can be measured in the field by artificially increasing ca to a high level – leads 
to a predictable optimal ratio of Jmax to Vcmax that declines steeply with growth temperature, in 
accordance with experimental findings. The mathematical optimization was performed using the 
Smith formula relating the electron transport rate to absorbed light at the leaf level. Inclusion of this 
acclimation of Jmax has been found to exert a modest but significantly beneficial effect on the 
prediction of Vcmax. Closely similar results are found using the alternative empirical light response 
curve (a non-rectangular hyperbola with curvature parameter Θ) that is more commonly used in 
conjunction with the FvCB model (Smith et al., in press). Regardless of which light-response curve is 
used, the practical consequence is the Jmax, like Vcmax, does not need to be independently specified. 

Together, the elements described above define a model to predict GPP. This is achieved simply by 
equating the light- and Rubisco-limited rates of photosynthesis in the FvCB model (implicitly over an 
acclimation period of days to weeks, compatible with the time scale of remotely sensed fAPAR 
products), and re-arranging to eliminate χ, Vcmax and Jmax (Wang et al., 2017a): 
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GPP = φ0(C3)  fAPAR  IPAR  m √{1 – (c*/m)2/3}        (3a) 

where φ0(C3) is the dimensionless intrinsic quantum efficiency of C3 photosynthesis (taken to be 
0.085 by Wang et al., 2017a), c* is a parameter representing the unit cost of maintaining the capacity 
for electron transport, and 
 
m  =  {ca – Γ*} / {ca + 2Γ* + 3Γ* √[1.6 η* D β–1 (K + Γ*)–1]}       (3b) 

Equation (3) has the mathematical form of a LUE model: that is, for a given set of environmental 
conditions (ambient atmospheric CO2, temperature, atmospheric pressure and vpd) modelled GPP is 
proportional to the absorbed PPFD. But unlike other LUE models, equation (3) is now explicitly 
defined in terms of the FvCB model of photosynthesis. Although GPP at time scales of minutes to 
hours (as seen, for example, during the diurnal cycle of CO2 flux) has a well-known saturating 
response to IPAR, GPP at longer (e.g. weekly) time scales has a linear response to IPAR, conferred by 
the acclimation of Vcmax. This principle was previously articulated by Haxeltine and Prentice (1996) 
and Dewar (1996), and provides a theoretical underpinning for LUE models (Medlyn, 1998). Equation 
(3) gives mathematical expression to the principle, and has proved to be at least as effective in terms 
of simulating flux-derived monthly GPP as other LUE models – as shown in Wang et al. (2017a), and 
in Table 2 below.  

Table 2: Goodness of fit (R2) and root-mean-squared error of prediction (RMSE) statistics for P model 
(Wang et al., 2017a) predictions of monthly GPP, compared with results from several LUE models 
tested against flux measurements by Yuan et al. (2014). 

 

4.1.3. EFFECTS OF CO2 IN THE P MODEL 

It follows from the co-ordination hypothesis that the benefit of rising CO2 in increasing the LUE of 
GPP by C3 plants will be limited to its effect on the light-limited rate of photosynthesis. This effect is 
predicted by the P model, with no additional parameter requirements, including its well-known 
interaction with temperature and vpd. Effects of CO2 on different photosynthesis metrics, as 
measured in 12 FACE experiments, were the subject of a meta-analysis by Ainsworth and Long 
(2005). They showed (for an increase of approximately 200 ppm in ca) that LUE changed by an 
average of +12 ± 9%, instantaneous water-use efficiency by +54 ± 17%, and stomatal conductance 
by –20 ± 3%. Corresponding predictions with the P model were +17%, +55% and –15% (Wang et al., 
2017a). 

Table S3 | Comparison of R
2
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) between our model and the means and ranges 541 

of reported median values from seven other LUE models, as reported by Yuan et al.
50

   542 

 R
2
 RMSE 

 This study Yuan et al. This study Yuan et al. 

All ecosystems 0.551 0.553 ± 0.096 2.094 2.428 ± 0.275 

Shrubland 0.772 0.255 ± 0.175 2.165 1.866 ± 0.915 

Deciduous broadleaf forest 0.588 0.703 ± 0.094 2.766 2.919 ± 0.450 

Evergreen broadleaf forest 0.341 0.119 ± 0.063 2.046 2.961 ± 0.801 

Evergreen needleleaf forest 0.535 0.501 ± 0.108 1.856 2.384 ± 0.437 

Grassland 0.572 0.631 ± 0.076 2.025 2.109 ± 0.280 

Mixed forest 0.700 0.637 ± 0.068 1.824 2.339 ± 0.325 
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4.1.4. SOIL MOISTURE EFFECTS 

In common with many LUE models, including those used operationally, the P model when driven by 
air temperature does not take account of soil moisture effects – except in so far as they are 
manifested through changes in fAPAR. In relatively moist soils the actual soil moisture content has 
little or no effect on LUE. Analysis of flux-based GPP measurements at most of the sites considered 
by Wang et al. (2017a), including a number of sites with pronounced dry seasons, has confirmed that 
there is no universal fall-off of LUE with drought. The implication is that drought-induced reduction 
of GPP is already accounted for  through the response of fAPAR to drought.  

However, some ecosystems (for example, some tropical savannas and Mediterranean forests) 
regularly show reduced LUE during part or all of the dry season (Stocker et al., 2018a). Moreover, 
extreme droughts to which ecosystems are not well adapted are expected to suppress LUE by a 
combination of reduced χ and (under the most severe drying) reduced Vcmax, as has been observed 
in drying-down experiments (Zhou et al., 2013). Therefore, in common with other operational 
products, the P model driven by air temperature is likely to overestimate dry-season GPP in some 
ecosystems, and to underestimate the negative effect of extreme droughts on GPP. These 
deficiencies could in principle be corrected through the use of a soil water index, in combination with 
the empirical functions presented by Stocker et al. (2018b), to modify the modelled GPP. When LST 
is used as a driver, however, the P model also implicitly takes account of the effect of restricted 
transpiration on LST. In this project, simulations driven by ECMWF air temperatures and by remotely 
sensed LST have both been conducted, and included in the validation protocol. This document also 
shows preliminary results using a soil water index as an additional input. 

4.1.5. C4 PHOTOSYNTHESIS 

The simplest way to implement C4 photosynthesis makes just two modifications to equation (3). First, 
a generic φ0 value suitable for C4 plants must be chosen (taken to be 0.055 in current work). Second, 
ca is made arbitrarily large. These two changes lead to a simplified equation for C4 photosynthesis: 

GPP = φ0(C4)  fAPAR  IPAR           (4) 

GPP of C4 plants can benefit from rising CO2 under conditions of limited water availability, because 
water-use efficiency increases even if photosynthesis does not. However, this benefit is expected to 
be fully realized in increasing fAPAR. 

4.1.6. MODELLING ABOVE-GROUND BIOMASS PRODUCTION 

The translation from GPP to ABP (in carbon units, easily modified to dry matter units) can be 
summarized conceptually by the formula ABP  =  (1 – fBG) x CUE x GPP, where fBG is the fraction of 
NPP allocated below ground (including root exudation, as well as allocation to the maintenance and 
turnover of roots) and CUE is the carbon use efficiency, i.e. the ratio of NPP to GPP. (This formula 
disregards the fraction of NPP allocated to VOC emission, which is much smaller than fBG.) 

The additional terms required to calculate ABP from GPP are, unfortunately, much less well 
understood from a theoretical and quantitative point of view than the terms in the equations for 
GPP itself. There are indications for two competing effects of temperature on ABPE. On the one hand, 
acclimation of Vcmax results in a weakly increasing Vcmax with growth temperature (Togashi et al., 
2018); and leaf dark respiration varies approximately in proportion to Vcmax, according to the FvCB 
model. Accordingly, leaf dark respiration also shows a weak increase with growth temperature (Atkin 
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et al., 2015). This effect, by itself, would be expected to cause CUE to decrease with increasing 
temperature. On the other hand, warm conditions increase the availability of soil nutrients by 
enhancing the rates of microbial metabolism, thus diminishing the need for plants to allocate carbon 
below ground – thereby reducing fBG (Gill and Finzi, 2017), and potentially also increasing CUE. But 
there is no scientific consensus about the relative magnitudes of these effects, or indeed any other 
possible climatic effects on ABPE. Moreover, there is strong evidence that ABPE is influenced by non-
climatic factors: soil fertility (Vicca et al., 2012), forest stand age and, above all, land management 
status (Campioli et al., 2015). Thus, a remotely sensed ABP product should not simply estimate ABP 
for a given pixel, but should provide users with alternative functions allowing land use (and in the 
case of forests, stand age) to be taken into consideration.  

The general approach adopted here is to use available ecosystem carbon budget data (including 
independent measurements of GPP and ABP), at sites where land cover, land use and forests stand 
age are known, to derive such functions statistically. This approach is preferred to trying to model 
total autotrophic respiration, which has proved to be a major limitation of the MODIS NPP product, 
and below-ground allocation. Because of the ubiquitous acclimation of autotrophic respiration to 
temperature (Atkin et al., 2015), the instantaneous response of plant respiration rates to 
temperature (as expressed in the Q10 factor employed by many models, including MODIS NPP) is 
actually irrelevant to the prediction of ABPE. In contrast, land cover/land use categories and forest 
stand age convey important information for determining ABPE. 

4.2. DATA NEEDS TO IMPLEMENT THE P MODEL 

Here we list the data needed for implementation of the P model, and the specific data sources that 
were used for calibration and validation. 

• Solar radiation and vapour pressure: For calibration, in-situ measurements at the flux sites were 
used. For validation, the data were obtained from the ECMWF high-resolution forecast model. 
These data are operational forecasts for the next 24 hours, from the ERA-Interim reanalysis (Dee 
et al., 2011) for 1989-2008 and thereafter obtained via the MeteoGroup operational forecast 
system: see 
https://www.ecmwf.int/sites/default/files/elibrary/2015/16559-user-guide-ecmwf-forecast-
products.pdf 
IPAR data were derived from global radiation and converted to PPFD for input to the P model 
using the conversion factor 2.04 μmol J–1 (Meek et al. 1984). Vapour pressure deficit was 
calculated from vapour pressure and temperature by standard equations in Allen et al. (1998). 

• Temperature: For calibration, daily temperature data were provided in ATBD v1 from in-situ air 
temperature measurements at the flux sites, and here from remotely sensed daytime LST. For 
validation, daily temperature data were provided from (a) ECMWF meteorological data, as 
described above for solar radiation and vapour pressure, and (b) again from remotely sensed 
daytime LST. The source of remotely sensed LST data was level 2 ENVISAT AATSR (Ghent et al., 
2012) obtained via the ESA project Globtemperature (http://www.globtemperature.info/). Pre-
processing of these data involved cloud/shadow masking and interpolation and smoothing 

(modified from Swets et al., 1999) to provide 10-daily averages.  
• fAPAR data for calibration were obtained from SeaWiFS and MERIS GVI data (Ceccherini et al., 

2013) via fapar.jrc.ec.europa.eu. For validation, fAPAR data were obtained from MERIS GVI 
(Gobron et al., 1999) via  http://meriss10.vgt.vito.be. 

• Ambient partial pressure of CO2: the time-varying CO2 mole fraction obtained from the 
monitoring station at Mauna Loa, Hawaii is converted to partial pressure units, and used as input 

https://www.ecmwf.int/sites/default/files/elibrary/2015/16559-user-guide-ecmwf-forecast-products.pdf
https://www.ecmwf.int/sites/default/files/elibrary/2015/16559-user-guide-ecmwf-forecast-products.pdf
http://www.globtemperature.info/
http://fapar.jrc.ec.europa.eu/
http://meriss10.vgt.vito.be/
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to the P model. Data are from the Scripps Institution CO2 monitoring network (Keeling et al., 
2001): 
http://scrippsco2.ucsd.edu/data/atmospheric_co2/mlo 

• C3 versus C4 photosynthesis: the need for data on the distribution of C3 versus C4 plants (which 
is problematic, especially where crops are concerned) is circumvented by providing both values 
for every pixel. 

• Soil moisture: in an alternative P model version, we have used the Soil Water Index provided by 
the Copernicus Global Land Service: https://land.copernicus.eu/global/products/swi at 0.1˚ grid 
resolution (10-daily averages). The version SWI–060 with a characteristic time of 60 days was 
chosen, following Ceballos et al. (2005), as corresponding to a typical soil depth. 

4.3. THE APPROACH TO ESTIMATING PER-PIXEL UNCERTAINTY IN GPP 

The P model algorithm is derived from first principles and consists of a single equation, which can be 
differentiated with respect to all of the uncertain quantities that it contains. We have accordingly 
implemented a classical Type B uncertainty evaluation, which is derived analytically and produces a 
per-pixel uncertainty value explicitly considering the known sources of uncertainty in different 
quantities entering the model and combining them using established principles. 

4.3.1. UNCERTAINTY EVALUATION BASED ON THE P MODEL ALGORITHM 

Equations (3) and (4) contain a number of input variables and parameters whose uncertainty can be 
quantified. In addition, a number of the photosynthetic parameters are temperature-dependent. 
Uncertainties in the temperature dependencies are separated from uncertainty in the temperature 
data by applying the following standard formulae: 

Γ*  =  Γ*[25] exp {(ΔHΓ*/R)(1/298.15 – 1/T)}         (5) 

η*  =  exp {580 [1/(T – 138)] – [1/(160]}          (6) 

K    =  KC (1 + O/KO)             (7) 

KC  =  KC[25] exp {(ΔHK_C/R)(1/298.15 – 1/T)}         (8) 

KO  =  KO[25] exp {(ΔHK_O/R)(1/298.15 – 1/T)}         (9) 

where R is the universal gas constant (8.314 46 J mol–1 K–1), T is the canopy temperature (K), KC is the 
Michaelis-Menten coefficient for carboxylation (Pa), KO is the Michaelis-Menten coefficient for 
oxygenation (Pa), O is the partial pressure of oxygen (209 460 µmol mol–1 x atmospheric pressure in 
Pa); Γ*[25], KC[25] and KO[25] are the values of Γ*, KC and KO, respectively, at 298.15 K; and ΔHΓ*, 
ΔHK_C and ΔHK_O are the corresponding activation energies (J mol–1). Moreover, if D is estimated from 
absolute water vapour pressure (ea) and saturation vapour pressure (es), then: 

D  =  es(TC) – ea             (10) 

where es  =  es(0) exp {17.27 TC/(TC + 237.3)} (Pa) and TC = T – 273.15 K. 

Those quantities that are either defined precisely, or known with an uncertainty that is effectively 
negligible in this context, have been assigned numerical values above and will not be considered 
further. In the following section, we describe the approach that we have adopted in the validation 

http://scrippsco2.ucsd.edu/data/atmospheric_co2/mlo
https://land.copernicus.eu/global/products/swi
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exercise to derive standard uncertainties for the remaining quantities. The formulation above allows 
each of the sources of uncertainty to be considered independent and, therefore, uncertainties from 
each source to be combined using the standard formula: 

u2(y)  =    Σi (∂f/∂xi)2 u2(xi)           (11) 

where u(y) is the standard uncertainty of GPP, ∂f/∂xi is the sensitivity of GPP to variable xi (obtained 
by differentiating equation (3) with respect to each uncertain variable and evaluating the partial 
derivative at the current central value of xi), and u(xi) is the standard uncertainty of xi. 

4.3.2. DATA UNCERTAINTIES 

fAPAR: standard uncertainties have been estimated as the standard deviation of values in the 9 x 9 
pixel grid surrounding the pixel of interest.  

LST: the data have been smoothed and gap-filled. Uncertainties provided on a per-pixel basis have 
been averaged over each dekad for each pixel.  

CO2 mole fraction data, obtained on an annual basis from the Scripps Institute of Oceanography 
Mauna Loa record, have been assigned a nominal uncertainty of ± 0.1 ppm. However, substantially 
greater uncertainty derives from local variations in ca due to ground-level sources and sinks in soils 
and vegetation, and local industrial and/or transport sources. This uncertainty was approximated as 
the difference between the current global value and the corresponding measured value at each of 
the flux sites. The total uncertainty ascribed to CO2 was small, < 0.1%.  

Uncertainties were not available for data on shortwave radiation or vapour pressure, and are not 
provided in the ECMWF operational data stream. However, we note that the calculation of vpd 
depends on LST and therefore the uncertainties in LST, at least, propagate into vpd. 

In the global GPP product, uncertainties on fAPAR will eventually be derived from per-pixel 
uncertainties provided with the Sentinel-3 data. How to estimate uncertainties in the other 
meteorological variables remains to be considered. 

Parameter uncertainties 

The parameter β was estimated based on leaf δ13C data, from the intercept of the regression of ln 
χ/(1 – χ) against environmental predictors (Wang et al., 2017a). The uncertainty of this estimate was 
assessed from the standard error of the intercept, and inflated to account for uncertainty in the 
conversion from stable isotope measurements to χ. The value used was β = 160 ± 2.7 (H. Wang, 
unpublished analysis). 

The parameter c* was estimated from published values of electron transport capacity (Jmax) and 
carboxylation capacity (Vcmax) under a variety of experimental growth conditions (Kattge and Knorr, 
2007; Wang et al., 2017a). The uncertainty of c* was estimated based on a regression of 
experimentally determined Jmax/Vcmax values against growth temperature. The value used was 0.41 ± 
0.112 (H. Wang, unpublished analysis). 

The remaining parameters of equations (3) and (4) are standard elements of the FcVB photosynthesis 
model. They are rather accurately measured, and show relatively little variation among different 
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plant species and measurement techniques. Nonetheless, they are subject to some uncertainty, 
which is taken into account as described below. 

φ0(C3) and φ0(C4): published surveys of measurements on various species show some variability in 
these parameters  (Skillman, 2008; Zhu et al., 2010), with an approximately normally distribution 
across species within each photosynthetic pathway. It is appopriate to calibrate these parameters 
within a plausible range, because of natural variation in their values across species; natural variation 
in the fraction of photosynthetically active radiation used for photosynthesis; and unresolved 
systematic variation in magnitude among different remotely sensed fAPAR products.  

Γ*[25], KC[25], KO[25] and the corresponding activation energies: most recent modelling studies 
have used the in vivo values determined originally by Bernacchi et al. (2001), but other  experimental 
data sets have given slightly different reference values and activation energies (De Kauwe et al., 
2016b). There is also some variation in Rubisco kinetic properties across species from different 
environments (e.g. Hermida-Carerra et al., 2016). Based on this literature, we have adopted the 
following values (and uncertainties) for each parameter: Γ*[25] = 4.08 ± 0.10 Pa at standard 
atmospheric pressure; ΔHΓ* = 27055.67 ± 5020.93 J mol–1; KC[25] = 40.41 ± 3.45 Pa; ΔHK_C = 64805.5 
± 5018.50 J mol–1; KO[25] = 27480 Pa (no uncertainty assigned); ΔHK_O = 36164 ± 152.74 J mol–1. 

4.3.3. COMBINING UNCERTAINTIES 

Derivatives of equation (3) with respect to each uncertain quantity have been obtained analytically. 
For constant quantities, such as the two φ0 values, the derivative are pre-calculated. For quantities 
that vary in time and/or space, the derivative is evaluated as part of the standard workflow.  

4.4. A PRELIMINARY CALIBRATION DATA SET FOR GPP 

The University of Antwerp group has selected from the most recent synthesis data set 
(http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/) 17 flux sites in different biomes that have 
data in the public domain, and are characterized by multi-year records (daily data over a period of at 
least 5 years) with good quality GPP data, checked by the standardized methodology defined by 
FLUXNET (Reichstein et al., 2005; Papale et al., 2006), and a large, relatively homogeneous vegetation 
footprint (at least 1 km x 1 km) to ensure reliable comparisons between in situ and remotely sensed 
data. These 17 sites (  

http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
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Table 3) provide the basis for calibration.  
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Table 3: The calibration set of eddy-covariance flux measurement sites. VEG = IGBP vegetation type: 
EBF = evergreen broadleaf forest, ENF = evergreen needleleaf forest, OSH = open shrubland, CRO = 
cropland, DBF = deciduous broadleaf forest. 

 

CODE NAME LAT (˚) LONG (˚) ELEV 
(m) 

VEG 

AU-Tum Tumbarumba 
 

–35.6566 148.1517 645 EBF 

CA-NS3 UCI-1964 burn site 55.9117 –98.3822 260 ENF 

CA-NS6 UCI-1989 burn site 55.9167 –98.9644 244 OSH 

CA-Obs Saskatchewan – Western Boreal, Mature 
Black Spruce 

53.9872 –105.1178 629 ENF 

DE-Geb Gebesee 51.1001 10.9143 162 CRO 

DE-Hai Hainich 51.0792 10.4530 430 DBF 

DE-Kli Klingenberg 50.8929 13.5225 478 CRO 

FI-Hyy Hyyttiälä 61.8475 24.2950 181 ENF 

FR-Fon Fontainebleau-Barbeau 48.4764 2.7801 103 DBF 

FR-LBr Le Bray (after 28 June 1998) 44.7171 –0.7693 61 ENF 

FR-Pue Puechabon 43.7414 3.5958 270 EBF 

IT-Cpz Castelporziano 41.7052 12.3761 68 EBF 

NL-Loo Loobos 52.1666 5.7436 25 ENF 

US-Ha1 Harvard Forest EMS Tower (HFR1) 42.5378 –72.1715 340 DBF 

US-MMS Morgan Monroe State Forest 39.3232 –86.4131 275 DBF 

US-UMB University of Michigan Biological Station 45.5598 –84.7138 234 DBF 

US-WCr Willow Creek 45.8059 –90.0799 520 DBF 

4.5. CALIBRATION RESULTS 

Simulations were set up for each of the calibration sites using local meteorological measurements of 
daily total incoming shortwave radiation and vapour pressure. Temperature was derived from 
remotely sensed LST, and vapour pressure was converted to vpd using the standard method (Allen 
et al. 1998) using LST as the relevant temperature for saturation vapour pressure. Annual values of 
CO2 were prescribed. Low-temperature inhibition of photosynthesis was represented in the simplest 
possible way, by setting GPP to zero during periods with subfreezing temperatures. 

φ0(C3) was estimated from the comparison of P model estimates with the GPP data by varying its 
value in the model between 0.05 and 0.1125. The optimized value (yielding the smallest sum of RMSE 
across sites) obtained in the initial calibration (ATBD v1) was 0.084: only marginally different from 
the value of 0.085 adopted in Wang et al. (2017a). The updated calibration presented here, with 
temperature provided by LST, yielded an optimized value of 0.092, which is still well within the 
experimentally observed range based on leaf-level measurements, and closer to the typical value of 
0.096 provided by Skillman (2008). Figure 2 shows the effect of varying φ0(C3) on the sum of RMSE 
across sites in the updated calibration.  

http://sites.fluxdata.org/AU-Tum/
http://sites.fluxdata.org/AU-Tum/
http://sites.fluxdata.org/US-WCr/


CHAPTER 4 THE P MODEL: DESCRIPTION OF THE PROPOSED METHOD 
 

 
34 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Effect of varying φ0(C3) on the summed daily RMSE between flux-derived and modelled GPP 
at the 17 calibration sites. 

φ0(C4) was not calibrated because C4-dominated vegetation was not represented among the 
calibration set of sites. Skillman (2008) gives a typical value of φ0 = 0.058 for C4 plants and we propose 
that this value be used. 

Figure 3 shows the results of data-model comparison in the form of time series of GPP from the flux 
measurements, and from the P model with optimized φ0(C3) according to the updated calibration. 
(Note that this Figure is reproduced in full here; the coloured model traces were inadvertently 
omitted from the published v2.1.) Visual agreement and RMSE values proved generally satisfactory. 
There were some mismatches, which do not appear to be related to vegetation type. GPP was 
generally underestimated at AU-Tum, for unknown reasons. Mismatches include underestimation of 
peak-season GPP by the model at a few sites; and in some sites and years, the simulation of positive 
GPP around the start and/or end of the growing season at times when the flux-derived GPP is close 
to zero. This latter problem was alleviated, although not completely removed, by the substition of 
LST for air temperature as a driver. Peaks in observed GPP during winter, e.g. at CA-NS3, were not 
simulated but are presumed to be artefacts. 
 
Figure 4 shows modelled GPP, with uncertainties, as provided for validation, in two versions: one 
driven by ECMWF temperature data, the other driven by LST data. Figure 5 illustrates the effects of 
including SWI as a modifier of GPP in the model driven by ECMWF temperature data. It can be seen 
that the effect of including SWI is closely similar to the effect of switching from ECMWF temperature 
to LST, in the two years for which both SWI and LST data were available. This finding suggests that 
the use of LST has been effective in representing the consequences of soil moisture variations for 
GPP. 
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Figure 3: Comparison of flux-derived GPP and P model-simulated GPP at the calibration sites. The 
dark grey traces represent the mean GPP from the alternative FLUXNET partitioning methods. The 
red traces represent modelled GPP (updated calibration driven by LST); the blue traces represent 
modelled GPP driven by air temperature. 
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Figure 4: Examples of P model-simulated GPP outputs (with uncertainties) as provided for the 
validation, with temperature either interpolated from ECMWF meteorological data, or derived from 
remotely sensed LST. 
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Figure 5: Examples of alternative P model simulations of GPP at two flux sites. The dark grey traces 
represent the range of GPP obtained  from the alternative FLUXNET partitioning methods. Blue: 
temperatures from ECMWF. Red: temperatures from LST. Green: temperatures from ECMWF, GPP 
modified by Copernicus SWI according to Stocker et al. (2018b). 

 

4.6. DERIVATION OF ABOVE-GROUND PRODUCTION EFFICIENCY FUNCTIONS 

A meta-analysis of the controls of ABPE was based on 117 unique sites represented in four data sets: 
an unpublished literature review by Alessio Collalti, Euro-Mediterranean Center on Climate Change, 
Italy; the Forests data set (Luyssaert et al., 2007) with supplementary data provided by Sara Vicca, 
University of Antwerp; the Grasslands and Croplands dataset, also provided by Sara Vicca; and the 
ForC data set (Anderson-Texeira et al., 2018). The selection criteria for sites were (a) the availability 
of independent measures of both ABP and GPP, (b) information on management (and stage age in 
the case of forests), and (c) geographic coordinates. Mean annual temperature (MAT, °C) and annual 
precipitation total (Ppn, mm) data were derived from the data set if provided, or otherwise estimated 
using the CHELSA data (Karger et al., 2017). Forest sites were classified as fertilized and/or irrigated 
(FI), otherwise managed (M), unmanaged or pristine (UM), and recently disturbed (RD). Forest stand 
age was log-transformed to alleviate skewness. The age of old-growth forests was arbitrarily set to 
999 years. 
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Data exploration and initial regressions highlighted four potential outliers, which were excluded from 
subsequent analyses: two sites with ABPE > 0.9 (one forest site and one maize crop), and two forest 
sites that generated very high residual values in an initial analysis with ABPE 0.09 and 0.70 
respectively. Model selection followed a protocol recommended by Zuur et al. (2009). An ordinary 
least-squares multiple linear regression model was compared with a mixed-effects model that 
shared the same fixed terms, but included a random intercept term for sites.  The mixed-effects 
model was not preferred on either log-likelihood or Akaike information criteria, so simpler fixed-
effects models were adopted throughout. 

4.6.1. FORESTS AND PLANTATIONS 

Commencing with a “beyond optimal” model (management + log(age) + MAT + Ppn), backward 
stepwise selection yielded a final model that predicts ABPE in forests as a function of management, 
age and Ppn (Model 2 in Table 4; R2 = 0.35).  Bioclimatic indices (CHELSA) for mean temperature of 
the warmest quarter and the seasonality of temperature and rainfall were also included in model 
iterations, but offered no improvement in explanatory power. Model residuals (Model 2,  Table 4) 
were well behaved and gave no concern for the underlying assumptions of equality of variance and 
normality.  There was no discernible pattern in plots of model residuals against MAT, supporting the 
decision to exclude MAT from the final model.   

Table 4 Selection steps for multiple regression models to predict ABPE. 

 
 
 
The analysis indicated that ABPE is lowest in unmanaged forest sites with low rainfall, and that 
efficiency declines with stand age (Figure 6).  Excluding old-growth forest sites left this model 
virtually unchanged. 

Model Explanatory variables Step df AIC RSS 

1 Mgmt_code + log(age) + MAT + Ppn 8 -357.51 0.717      

2 Mgmt_code + log(age) + Ppn drop MAT 7 -359.46 0.717      

3 Mgmt_code + log(age) + MAT drop Ppn 7 -352.38 0.784      

4 Mgmt_code + MAT + Ppn drop age 7 -352.09 0.787      

5 log(age) + MAT + Ppn drop Mgmt 5 -348.75 0.864      
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Figure 6 Forest sites: partial residual plots showing ABPE as a function of management regime, 
annual precipitation and stand age.  The first plot illustrates the effect of management regime while 
holding precipitation and age at their median values. 

 
The derived equation for ABPE in forests, illustrated in Figure 6, is as follows: 

ABPE  =  im  –  γage log10
 (age) + γPpn Ppn 

where: 

im  =   0.371 ± 0.043 (fertilized and/or irrigated) 
 0.306 ± 0.036 (otherwise managed) 
 0.233 ± 0.039 (unmanaged) 
 0.250 ± 0.046 (recently disturbed) 
γage = 0.043 ± 0.016 
γPpn = 0.079 ± 0.022 x 10–3 mm–1 
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4.6.2. GRASSLAND AND CROPLANDS 

Fewer data were available for non-forest systems (n = 29), especially for crops, where the chief 
difficulty was in finding studies that provided independent estimates of ANPP and GPP.  Statistical 
power was limited. The selection steps arrived at a linear model that predicted ABPE simply as a 
function of ecosystem (grass or crop; R2 = 0.53). Model variants that included management regime 
as an additional explanatory term suffered from the absence of a fully crossed Ecosystem: 
Management design. Such addiditive models were not preferred on log-likelihood or Akaike criteria 
even when management regime was simplified to two categories, ‘managed’ versus ‘unmanaged’.  
None of the available environmental variables or indices added to explanatory power for these non-
forest sites. 

 

Figure 7 Non-forest sites: Partial residual plots showing ABPE as a function of ecosystem type. 

Croplands show substantially higher ABPE than grasslands (Figure 7). Given the small sample sizes in 
this analysis, the following generic values of ABPE are proposed: 0.43 ± 0.04 for crops and 0.17 ± 0.05 
for grasslands. 
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CHAPTER 5 VALIDATION APPROACH 

This chapter summarizes the validation and proposed comparative benchmarking of the products:  

(1) Point-location time series of modelled GPP (as illustrated in Figure 4 above) have been compared 
with in situ flux measurements of GPP to assess their accuracy, and to compare the performance of 
the LST and  ECMWF versions, as documented in the Validation Report. Modelled GPP has also been 
provided for the set of ABP validation sites. Validation will involve applying the appropriate ABPE 
functions for each site. 

(2) The global spatial GPP/ABP products are being compared to other operational EO products 
(MODIS, C-GLOPS1) to assess how much, and where, the new products differ from existing ones. 

5.1. VALIDATION METHOD AGAINST IN-SITU DATA 

Validation aims to assess the capability of model simulations to describe carbon dynamics for a 
variety of ecosystems and to identify potential ways to improve them.  A separate Validation Report 
tests how well the GPP simulations describe annual carbon dynamics for different ecosystems and 
climates; encompass the daily and seasonal trends of GPP; describe interannual variability; and 
describe the main environmental  controls of GPP. 

5.1.1. DESCRIPTION OF THE IN SITU DATA 

Validation of modelled GPP relies on the FLUXNET 2015 database of values obtained with the eddy-
covariance technique. This well-established technique provides GPP by post-processing of direct 
measurements of net ecosystem CO2 exchange. FLUXNET includes data from regional networks, 
international projects and field-sites of research institutes and provides a thoroughly standardized 
data treatment and data analysis for sites distributed across the world. These data have been 
extensively used for the development and evaluation of ecological models at regional or global scale.  

The FLUXNET GPP data are well suited to use as validation products for several reasons: (i) they are 
available at both high time resolution (half-hourly) and aggregated to longer time steps (daily to 
annual); (ii) they are available for multiple years (>10 years for the most intensively studied sites); 
(iii) they typically measure an area of the ecosystem (footprint) comparable to the resolution of 
remote sensed products; (iv) data are provided with uncertainty estimations; and (v) sites are 
available globally and for all types of terrestrial ecosystems, including forests, savannas, grasslands, 
croplands, wetlands and tundra. FLUXNET was established in 1998 (Baldocchi et al., 2001) and since 
then techniques have improved and different database versions have been produced. We use the 
latest version (FLUXNET 2015) and confine attention to publicly available data, for which data use is 
free and open provided that proper acknowledgment is given to site PIs and funding agencies (Tier 
1, see http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). About 200-250 GPP sites are publicly 
available now, of which 122 met our criteria for quality, homogeneity and length of record. 

ABP validation is being carried out using a large ABP dataset assembled by the University of Antwerp 
group.  
 

http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
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5.1.2. VALIDATION METHOD 

Validation is being carried out at high spatial resolution i.e. at site level; we do not plan to perform 
landscape or regional validations, as this would require up-scaling of in situ data with a large 
propagation of uncertainty. A new fAPAR data set was applied. Otherwise, the model and its data 
inputs follow the same protocol as was used for the updated calibration and presented in Figures 2 
and 3 above. These outputs also include uncertainties (by site and dekad) in modelled GPP calculated 
by the method described above. Some examples of these outputs, representing major biomes, are 
illustrated in Figure 4. 

5.2. BENCHMARK METHOD TO OTHER DATA SETS 

5.2.1. REFERENCE DATA SETS 

At global scale a comparison with two operational EO GPP/NPP products, both discussed in Chapter 
3 above, is underway: 
 
The C-GLOPS1 Dry Matter Production (DMP) product at 10-daily time steps and expressed in kg DM 
ha–1 day–1. The DMP is generated by a LUE model first implemented by Veroustraete (1994) and 
modified and improved in the MARSOP and Copernicus Global Land Service project to run on SPOT-
VGT/PROBA-V imagery and ECMWF meteorological data. Within C-GLOPS, the product has been 
extensively validated against in-situ, MODIS and other modelled datasets of GPP and NPP. The ATBD 
and validation report of the DMP are available through the C-GLOPS website, 
http://land.copernicus.eu. The current online version 1 is based on 1 km SPOT-VGT and PROBA-V 
fAPAR data derived from the MARSOP project. In the meantime, a second version of the DMP is in 
development and has been validated. Besides a number of algorithmic changes, this version is based 
on an improved dataset of SPOT-VGT and PROBA-V fAPAR. Both products are being compared with 
the P-model output.    
 
MODIS GPP (MOD17A2) and NPP (MOD17A3) as described in detail by Running et al. (1999), Heinsch 
et al. (2003) and Zhao et al. (2005). This is also a variant of the satellite-based LUE approach. The GPP 
product is available at 8-daily timesteps. The NPP product is derived on an annual basis using 
maintenance and growth respiration estimates linking daily biomass and annual growth of plant 
tissues to the satellite-derived estimates of leaf area index (LAI). The MYD17A3H Version 6 product, 
recently released by MODIS, provides estimated annual NPP at 500 m pixel resolution. Annual NPP 
is derived from the sum of the 45 8-day Net Photosynthesis (PSN) products (MYD17A2H) from the 
given year. 

5.2.2. METHODS 

The methods for the benchmarking of the different EO-derived vegetation production data sets are 
based on guidelines, protocols and metrics defined by the Land Product Validation (LPV) group of 
the Committee on Earth Observation Satellite (CEOS) for the validation of satellite-derived land 
products. The following aspects will be evaluated. 
 
(1) Product completeness: the missing values or pixels flagged as invalid over land were quantified, 

overall and over different biomes. An aggregated version of the ESA CCI land cover map will used 
for this purpose. 

(2) Spatial consistency analysis: 

http://land.copernicus.eu/
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▪ Spatial distribution of the GPP/NPP values: global maps of metrics expressing the similarity 
and difference between different global GPP/NPP time series will be computed. The metrics 
include the Root Mean Squared Error (RMSE). 

▪ Magnitude of the retrievals: global yearly averages will be calculated for GPP and NPP. 
(3) Global statistical analysis: 

▪ Histograms of bias: histograms of residuals between products. 
▪ Distribution per biome type: statistical distributions of GPP/NPP values and residuals, 

computed over biomes for the different data sets. An aggregated version of the ESA CCI land 
cover map will used for this purpose. 

▪ Global statistics: Scatterplots between the different datasets will be produced at a global 
scale and per biome. Metrics (e.g. coefficient of determination, agreement coefficient, 
orthogonal regression) among different data sets are computed per biome. 

(4) Temporal consistency analysis 
▪ Temporal variation: Statistical metrics among different data sets are computed per scene to 

evaluate the time evolution of the metrics. 
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