

→ LAND PRODUCT VALIDATION AND EVOLUTION 2018

27 February – 1 March 2018 ESA–ESRIN | Frascati (Rome), Italy

ESA UNCLASSIFIED - For Official Use

lpve

Else Swinnen¹, Roel Van Hoolst¹, Rebecca Thomas², Colin Prentice², Sara Vicca³, Manuela Balzarolo³, Ivan Janssens³

TerrA-P Estimation of GPP and NPP from Sentinel-3 data starting from first principles

ESA UNCLASSIFIED - For Official Use

Else Swinnen | ESRIN | 28/02/2018 | Slide 2

Objectives

DEFINITION

The P-model developed by Imperial College London (ICL) is used as a basis for the Gross Primary Productivity (GPP).

Imperial College London

IMPLEMENTATION

VITO remote sensing implements the model on global MERIS and Sentinel-3 data.

VALIDATION

The models outcome is validated by the University of Antwerp using FLUXNET GPP and historical in-situ and biomass measurements + benchmark to similar global datasets

ESA UNCLASSIFIED - For Official Use

Else Swinnen | ESRIN | 28/02/2018 | Slide 3

Requirements survey

Characteristic	Target Requirement/ Product Specification	
	Proposed	Requested
DEFINITION		
Products	GPP ABP, because there is too little in situ data to accurately produce BP or NPP	GPP ABP / NPP / BP
Units	GPP: g C/m²/day ABP: kg DM/ha/day	g C/m²/day and kg DM/ha/day
Further specification	GPP and ABP will be produced for C3 and C4 plants, without distinction of where they occur.	Distinction between C3 and C4 plants
Quality & uncertainty information	Quality flags Per-pixel uncertainties Accuracy assessment of products.	Quality flags Per-pixel uncertainties Information on accuracy of product
Timeliness	Within 3-5 days after acquisition	Within 3-5 days after acquisition
Periodicity	10-daily	10-daily (daily)
Spatial resolution	300 m Provide downsampled products	300 m (or lower)
ACCURACY		
Relative accuracy	20%	20%
Absolute accuracy	150 g C/m²/year	120-150 g C/m²/year
ESA UNCLASSIFIED - For Official Use		Else Swinnen ESRIN 28/02/2018 Slide 4

2007 - 20 10

+

Outputs

ESA UNCLASSIFIED - For Official Use

GPP Gross primary production – the rate of total carbon fixation (photosynthesis) by the ecosystem.

- The most fundamental measure of primary production, as all ecosystem functions depend on it.
- GPP data are available from flux measurements at time scales from half-hourly up to multi-annual – for some hundreds of locations worldwide (albeit with a bias towards temperate regions) and for crops as well as natural and managed ecosystems.

ABP Above-ground primary production – the rate of production of plant matter, excluding roots.

- A practically important measure, e.g. the production rate of forage for grazing animals, it is closely related to the production rate of timber for harvest
- It can be converted to estimates of crop yield.
- There are data on ABP: commonly on at the annual time scale, for many ecosystems, especially crops and managed forests but also for natural ecosystems.

Autotrophic Respiration =Loss of CO₂ to produce energy to carry out essential functions for maintenance and growth intercontribution = from CO- to plant sugar VOC emissions GPP = Amount of carbon fixated produced during photosynthesis NPP = GPP - autotrophic respiration 8P = NPP - volatile organic compounds emissions - root exudates

ABP = the above-ground part of BP

Else Swinnen | ESRIN | 28/02/2018 | Slide 5

Model development

ESA UNCLASSIFIED - For Official Use

Model is based on P-model (Wang et al., 2017)

- Wang, H., I.C Prentice, W.M. Cornwell, T.F. Keenan, T.W. Davis, I.J. Wright, B.J. Evans and C. Peng (2017) Towards a universal model for carbon dioxide uptake by plants. *Nature Plants* **3**: 734–741.
- Online code repository (<u>https://bitbucket.org/labprentice/</u>)

Desirable attributes of the model:

Outputs with associated uncertainties

- An explicit derivation from the standard Farquhar, von Caemmerer and Berry (FvCB) photosynthesis model, and a clear relationship to a well-established functional form for stomatal behaviour – both elements required for a prediction of GPP.
- A representation of physiological CO_2 effects on photosynthesis that is consistent with both the FvCB model and results from FACE experiments.
- No distinctions among plant functional types and biomes (except for the well-established differences between C_3 and C_4 plants), eliminating the need for spatial discontinuities induced by the use of a land-cover classification and look-up table.
- Demonstrated success in representing flux-derived GPP across different biomes at monthly time scales.

Extremely parameter-sparse, while achieving high accuracy.

Else Swinnen | ESRIN | 28/02/2018 | Slide 6

P-model: input data

- **fAPAR** per pixel and dekad or month: MERIS GVI data and Sentinel-3 (later).
- **Meteorological data** (ECMWF) daily total 'global' (solar shortwave) radiation and vapour pressure from ECMWF.
- **Remotely sensed LST** (GlobTemperature) daily temperature data to drive the model, including the calculation of vpd from actual vapour pressure.
- Ambient partial pressure of CO₂: a time-varying global average CO₂ mole fraction obtained from the monitoring station at Mauna Loa, Hawaii is converted to partial pressure units and used as input to the P model.
- C₃ versus C₄ photosynthesis

ESA UNCLASSIFIED - For Official Use

Validation: general

In situ data FLUXNET-2015

Data

- GPP: FLUXNET-2015
- ABP: Vicca et al., 2012; Campioli et al., 2015

Methods

- Between-site differences in average annual GPP (modeled GPP against in-situ GPP).
- Interannual variation in modelled GPP against insitu observation of GPP (only for the years for which the remote sensed product matches observations).
- Seasonal variability in GPP at daily (considering mean or accumulated values over 24 hours), 10daily and monthly time scales.

Benchmark with other global data sets

Data:

- MODIS (MOD17A2)
- Copernicus Global Land Service Lot1 GDMP

Methods

- Product completeness
- Spatial consistency analysis
- Global statstical analysis
- Temporal consistency analysis

ESA UNCLASSIFIED - For Official Use

Else Swinnen | ESRIN | 28/02/2018 | Slide 8

P-model: current results

Model

Model calibration used monthly fAPAR based on combination of SeaWifs and MERIS GVI.

Model applied using:

- MERIS GVI (10-daily)
- Temperature data based on
 - ECMWF meteo data
 - GlobTemperature LST

Set of 122 sites:

- relatively homogeneous surrounding vegetation
- long measurement records
- quality

ESA UNCLASSIFIED - For Official Use

Validation

90 homogeneous sites selected from FLUXNET-2015

- 58 sites, for a total of 260 site years of data ECMWF
- 46 sites for a total of 227 sites years of data for LST estimates

Different time steps: Seasonal (10 days) & annual

Sites, PFT, climate

Meteorological forcing

Ecological functions

Else Swinnen | ESRIN | 28/02/2018 | Slide 9

Validation with in-situ data

ESA UNCLASSIFIED - For Official Use

Else Swinnen | ESRIN | 28/02/2018 | Slide 10

20

15

Simulated GPP (g m⁻² d⁻¹)

10

4

25

Validation with in-situ data

Validation with in-situ data

ESA UNCLASSIFIED - For Official Use

•

Else Swinnen | ESRIN | 28/02/2018 | Slide 13

_ II k = = + II = = = II II = = = H = 0 II = II II × i

European Space Agency

Future developments

P-model

GPP:

- Recalibrate with MERIS GVI and TCI
- Remotely sensed soil moisture effect on GPP
- Remotely sensed digital elevation model or a remotely sensed surface pressure to account for the various atmospheric pressure effects on photosynthesis → improve GPP at high elevations

Implementation

Implement the final P-model in a prototype processing chain to derive global estimates of GPP and ABP.

- MERIS: 2007 2008
- Sentinel-3: demonstrate on 2016 (?)

ABP

• Use global soils data reflecting the effect of soil fertility on the ratio of ABP to GPP.

Validation

Validation at global scale including benchmark to MODIS GPP (MOD17A2) and CGLOPS1 GDMP

ESA UNCLASSIFIED - For Official Use

Else Swinnen | ESRIN | 28/02/2018 | Slide 15

Thank you

https://terra-p.vito.be/

- ATBD v1
- User Requirements Survey
- Publication

Soon

- ATBD V2.1
- Validation report

ESA UNCLASSIFIED - For Official Use

Else Swinnen | ESRIN | 28/02/2018 | Slide 16

