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SUMMARY 

The TerrA-P project will implement and validate a new global monitoring system for primary 
production by land ecosystems, comprising 10-daily composites of gross primary production (GPP) 
and annual composites of above-ground biomass production (ABP) by C3 and C4 plants. Spectral 
reflectance data will eventually be provided by Sentinel-3. These data will be used to drive a 
recently developed universal, first-principles light use efficiency model (the ‘P’ model) for GPP.  

Initial model calibration was carried out using GPP derived from a selection of 17 eddy-covariance 
carbon dioxide (CO2) flux measurement sites. These sites were selected for their relatively 
homogeneous surrounding vegetation and long measurement records. The calibration used a 
merged input data set based on spectral reflectances from SeaWiFS and MERIS for the fraction of 
incident photosynthetically active radiation absorbed by green plant tissues (fAPAR). The required 
meteorological data for calibration were derived from direct measurements at the flux sites.  

This document is version 1 of the Algorithm Theoretical Basis Document (ATBD) for the proposed 
TerrA-P products. It describes the design criteria adopted for the new monitoring system based on 
a user survey and also on a set of scientific requirements, which go significantly beyond the current 
state of the art. The document briefly reviews the history of light use efficiency (LUE) models, and 
summarizes the strengths and weaknesses of various existing LUE models including those used 
operationally. The principle and derivation of the P model are described. It is shown how this 
model – which has the mathematical form of a LUE model – can nonetheless be derived from the 
standard model of photosynthesis. The P model has been shown to achieve comparable accuracy 
(in comparison to GPP derived from eddy-covariance carbon dioxide flux measurements) to other 
models, while requiring fewer parameters to be estimated. Optimal agreement of modelled and 
observed GPP in the calibration data set was obtained after minimal adjustment of the value used 
for the intrinsic quantum efficiency of C3 photosynthesis. 

The monitoring system will be further developed to make use of remotely sensed environmental 
inputs as far as possible to replace the interpolated meteorological inputs that are currently used in 
operational LUE models. The system will include data quality flags, and a specification of per-pixel 
uncertainties based on the established principles of uncertainty measurement and propagation. A 
preliminary description of the proposed method to assign per-pixel uncertainties is provided. The 
system will be validated using an extensive data set of GPP data derived from eddy-covariance flux 
measurements in different biomes and climatic regions, and the most comprehensive available 
global set of quality-controlled data on annual ABP. These developments will form the basis for 
version 2 of the ATBD. 
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CHAPTER 1 BACKGROUND OF THE DOCUMENT 

1.1. SCOPE AND OBJECTIVES 

The TerrA-P project aims to implement and validate a new global monitoring system for primary 
production by land ecosystems. The project focuses on gross primary production (GPP) and above-
ground biomass production (ABP), defined as follows: 

Gross primary production is the rate of total carbon 
fixation (photosynthesis) by the ecosystem. This is the 
most fundamental measure of primary production, as 
all other ecosystem functions depend on it. Also, 
thanks to the availability of eddy-covariance flux 
measurements, GPP data are available – at time scales 
from half-hourly up to multi-annual – for some 
hundreds of locations worldwide (albeit with a bias 
towards temperate regions), and for croplands as well 
as for natural and managed ecosystems. 

 

 

Figure 1 (left): schematic illustrating the different 
aspects of primary production. 

Above-ground biomass production is the rate of production of plant matter, excluding roots. This 
is a practically important measure, because this is the production rate of forage for grazing animals; 
it is closely related to the production rate of timber for harvest; and it can be converted (through 
data on the harvest index – the ratio of harvestable yield to ABP – for different crops) to estimates 
of crop yield. There are data on ABP, occasionally at a monthly time scale but more commonly at 
the annual time scale, for many ecosystems, especially crops and managed forests but also for 
natural ecosystems. 

We chose not to focus either on (total) biomass production or on net primary production (NPP), for 
the following reasons: 

Biomass production is the total rate of production of plant matter, including roots. For most crops 
the root production is of less interest than the above-ground production. Even for root crops there 
are data on the harvest index, so ABP can be used to predict harvestable yield by a simple 
conversion. There are some data on BP but in most cases the root production has not been 
measured directly, but rather inferred from above-ground measurements. Inevitably this increases 
the uncertainty of BP data. 

Net primary production is defined as the difference between GPP and plant respiration. Formerly, 
NPP was assumed to equivalent to BP. Most data that claim to be NPP are, in fact, BP. But it is now 
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understood that a fraction of NPP – under some circumstances this can be as much as 20% – is 
“lost” from the plant by other pathways than respiration, in the form of volatile organic 
compounds (such as isoprene and monoterpenes) and/or root exudates, which do not contribute 
to biomass production. Moreover, published data sets of “NPP” are generally of poor quality. 
 

The aims of the project will be achieved by using spectral reflectance data from Sentinel-3 as input 
to a recently developed universal, first-principles light use efficiency (LUE) model for GPP, called 
the ‘P’ model (for ‘production’). Initial calibration has been carried out against GPP data derived 
from a selection of site-based eddy-covariance carbon dioxide (CO2) flux measurements.  This 
calibration used a merged data set from SeaWiFS and MERIS (Global Vegetation Index, GVI) to 
provide the fraction of incident photosynthetically active radiation that is absorbed by green 
tissues (fAPAR), a key input to the P model. The model also requires meteorological data, which for 
calibration purposes have been derived from direct measurements at the flux sites. The model thus 
calibrated will provide the initial basis for a global system in which meteorological data, at least 
initially, are obtained by interpolation from a coarse-resolution grid. 

The project will create a monitoring system for 10-daily GPP and annual ABP by C3 and C4 plants. 
The system will eventually make use of remotely sensed environmental inputs as far as possible. It 
will include data quality flags and – an innovative feature – a specification of per-pixel 
uncertainties. It will be validated using an extensive data set of GPP derived from eddy-covariance 
flux measurements in different biomes and climatic regions, and the most comprehensive available 
global set of quality-controlled data on annual ABP. 

This is version 1 of the Algorithm Theoretical Basis Document (ATBD) for TerrA-P. Version 2 will be 
produced following developments during the course of the project.  

1.2. CONTENT OF THE DOCUMENT 

The document is organized in the following way. 

 Chapter 1 describes the background of the document. 
 Chapter 2 describes the criteria adopted for new primary production data products, taking 

into account both the requirements articulated by users, and scientific considerations. 

 Chapter 3 is a selective review of existing approaches to monitoring primary production 
from space, including those currently used operationally. 

 Chapter 4 describes the P model and the proposed manner of its implementation, 
including proposed approaches to calculate uncertainties; introduces the initial GPP 
calibration data set; and presents the results of the calibration. 
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CHAPTER 2 CRITERIA FOR NEW PRIMARY PRODUCTION DATA PRODUCTS 

2.1. INTERPRETATION OF USER REQUIREMENTS 

TerrA-P has conducted a survey targeting various potential users of the proposed new products, 
including current users of the Copernicus Global Land Operations Lot1 (CGLOPS-1) of the 
Copernicus Global Land Service. The survey yielded the following key information for product 
design. 

The principal products currently in use are MODIS GPP and net primary production (NPP), CGLOPS-1 
products, and models. The new products should thus aim to reproduce (at least) the functionality 
of these existing, widely-used products.  

Different users work at different geographic scales, from subnational to global. The new products 
should accordingly be global, gridded products allowing flexibility of application. 

About three-quarters of users surveyed agreed with the proposed strategy to focus on GPP and 
ABP. Some caveats were mentioned, including the fact that GPP cannot be directly derived from 
flux measurements (ecosystem respiration has to be factored out through a ‘partitioning’ method, 
of which there are several that give somewhat different results); and the fact that total biomass 
production (including production below ground) may sometimes be of greater interest than ABP. 
We propose to deal with uncertainty in partitioning by using the full range of alternative 
partitioning methods as a measure of uncertainty in observed GPP. For biomass production, 
however, the extreme paucity and low reliability of data on below-ground production argues for 
maintaining a focus on ABP. We note that ABP is quantitatively related to below-ground production 
by, for example, root crops just as it is quantitatively related to above-ground production by grain 
crops. 

Users were approximately equally divided in their preferences for units of dry matter versus 
carbon. For maximum comparability with existing products, and with the main data sources for 
each quantity, we propose supplying GPP in carbon units and ABP in dry matter units. Climate 
modellers preferred carbon units, but are likely to be more interested in 10-daily GPP than annual 
ABP. 

Most users saw the need to consider C3 versus C4 photosynthesis but, not surprisingly, there was no 
specific proposal as to how the prevalence of the two pathways could be specified on a per-pixel 
basis. We propose to circumvent this problem by providing both as alternatives for every pixel. 

Most users asked for a data quality layer, and information on uncertainty. A per-pixel uncertainty 
layer was not explicitly requested. However, a numbers of users in different ways indicated a need 
for quantitative, per-pixel uncertainty information. In our view a systematic approach to per-pixel 
uncertainty should be a significant part of product development, and would satisfy this need. 

The most popular sampling frequency was 10-daily. A number of users voted for daily, but daily 
data on spectral reflectances are not meaningful because many dates, in most locations, will be 
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affected by clouds. This problem can be largely circumvented by providing 10-daily composites. 
Most users asked for data availability in near-real time, that is, 3 to 5 days after acquisition.  

The preferred spatial resolution is 300 m. Some users work with coarser resolutions which, 
however, can be readily obtained by post-processing of a 300 m product.  

The average request in terms of relative accuracy was close to 20%, which likely provides a realistic 
target accuracy for both 10-daily GPP and annual ABP. 

Table 1 summarizes the user requirements, and the specifications adopted that are consistent with 
these requirements as far as is technically feasible. 

Table 1: Summary of user requirements and specifications adopted for TerrA-P products. 

User requirement Specification adopted 

Geographic scale subnational to global Global gridded product 

Focus on GPP and ABP Focus on GBP and ABP 

Carbon or dry-matter units Carbon for GPP, dry matter for ABP 

Distinction of C3 and C4 photosynthesis Provide results for both C3 and C4 plants 

Data quality layer, information on uncertainty Provide per-pixel uncertainty estimates 

Daily to 10-daily sampling frequency 10-daily sampling frequency 

Data availability in near-real time Data available 3-5 days after acquisition 

Spatial resolution 300 m or coarser 300 m grid with facility for post-processing 

Relative accuracy ca 20% Target relative accuracy 20% 

2.2. SCIENTIFIC REQUIREMENTS 

A priori we determined that new products should as far as possible possible satisfy a number of 
additional criteria, summarized here. These requirements go significantly beyond the current state 
of the art in LUE-based modelling. 

Explicit relationship to the standard model of photosynthesis. The Farquhar, von Caemmerer and 
Berry (1980) (FvCB) model is the standard model of C3 photosynthesis. Modifications exist to 
describe C4 photosynthesis. There are thousands of published field measurements of the 
parameters defined in the FcVB model. All current ecophysiological theory, and the great majority 
of biophysical land-surface schemes for climate modelling, make use of the FvCB model. Therefore, 
a newly developed remotely sensed GPP product should be explicitly defined in terms of the FvCB 
model.  

There is no such general model for plant respiration and other carbon “losses” from GPP. Thus 
models for biomass production should be based on GPP, with modifications to account for these 
losses as fractions of GPP. 

Representation of physiological effects of CO2. Models based on remotely sensed data, including 
thiose in operational use, generally do not consider the effect of changing atmospheric CO2 
concentration on the LUE of photosynthesis. Thus, they only consider a CO2 effect in so far as it is 
manifested by changes in foliage cover that can be seen from space. As a direct consequence, 
products such as MODIS GPP and NPP severely underestimate the generally increasing trend in 
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primary production due to rising CO2 (De Kauwe et al., 2016a). Newly developed products should 
explicitly include the effect of CO2 concentration on LUE. 

No discontinuities at biome boundaries. Although the convention of defining different model 
parameter values per biome is widely entrenched in remote sensing applications, it inevitably leads 
to discontinuities at boundaries defined by an external classification. This is a highly undesirable 
property, because biomes intergrade. Imposed biome boundaries are arbitrary and differently 
located according to different land cover products. New products should attempt to avoid such 
discontinuities. 

A demonstrated level of accuracy assessed by comparison to relevant measurements. Eddy-
covariance measurements of CO2 flux can be processed (‘partitioned’) to yield estimates of daily, 
10-daily, monthly or annual GPP. Flux measurement sites vary in public availability status, and in 
the length of records. Some sites are more suitable than others for model calibration and 
validation, because in areas of complex terrain or land use patterns there can be a severe problem 
in attempting to match remotely sensed spectral reflectance data with the (time-varying) footprint 
of the flux tower. Thus, model calibration and validation should be based on an informed selection 
of flux measurement sites. 
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CHAPTER 3 REVIEW OF SELECTED EXISTING APPROACHES 

3.1. BACKGROUND AND HISTORY 

The basis for nearly all algorithms designed to calculate primary production based on remotely 
sensed data is the general LUE model first proposed by Monteith (1972, 1977). Monteith based this 
model on field measurements of crop growth in both tropical and temperate climates, showing 
that growth is proportional to the time-integral of the light absorbed by the crop.  

The general LUE model can be applied either to GPP or to NPP. More formally, in a remote sensing 
context, the general LUE model states that primary production is proportional to the product of 
incident photosynthetic photon flux density (PPFD) and fractional green vegetation cover, also 
called fractional absorbed photosynthetically active radiation (fAPAR or FPAR). fAPAR depends on 
Leaf Area Index (LAI) but is closer to actual reflectance measurements than LAI, and more directly 
related to primary production. In the remote sensing literature, incident PPFD (μmol m–2 s–1) is 
more often described as ‘incident photosynthetically active radiation’ (IPAR) (W m–2). The former 
term is more accurate because photosynthesis depends on the number of photons absorbed, 
rather than their energy (which varies with their wavelength). However, the two units can be 
interconverted, if it is assumed that the solar spectrum is constant. 

NPP is the remainder of GPP after autotrophic (plant) respiration has converted approximately half 
of GPP back to CO2. Traditionally, NPP has been regarded as synonymous with biomass production, 
i.e. the production of plant tissues. However, it is now recognized that a fraction (which can be as 
much as 20%) of NPP is lost from plants in the form of exudation from roots (a carbon subsidy to 
microbes in the rhizosphere, which enables plants to increase their uptake of soil nutrients) and 
emissions of volatile organic compounds (VOCs) such as isoprene and monoterpenes from leaves 
(which confer protection against both oxidants, including ozone, and high leaf temperatures). We 
therefore make a distinction between NPP and biomass production. The latter is of greater interest 
than NPP sensu stricto to users in forestry and agriculture. 

Pioneering examples of remotely sensed primary production models are the Simple Diagnostic 
Biosphere Model (SDBM) of Knorr and Heimann (1995), the Carnegie-Ames-Stanford Approach 
(CASA) model of Potter et al. (1993), and the Global Production Efficiency Model (GLO-PEM) of 
Prince and Goward (1995). These models used spectral reflectance data from the Advanced Very 
High Resolution Radiometer (AVHRR) to infer fAPAR. A constant maximum LUE was specified, then 
reduced by scalars representing aspects of temperature and moisture conditions that can reduce 
LUE. The SDBM was combined with an atmospheric tracer transport model and deployed in an 
inverse mode, using observations of the seasonal cycle of atmospheric CO2 concentration at 
different latitudes to estimate a single global maximum value for the LUE of NPP, and a single 
global Q10 value to quantify the dependence of soil organic matter decomposition on temperature. 
In GLO-PEM, theoretical maximum LUE values for GPP were determined based on the FvCB model. 
One value was assigned for C3 plants and another for C4 plants. These values were modified 
following the FvCB model’s estimation of photorespiratory carbon loss as a function of 
temperature. GLO-PEM also made use of a number of other remote-sensing approaches to 
estimate meteorological variables, including IPAR. Unusually, this modelling approach – further 
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developed by Goetz et al. (1999) – aimed to derive all required meteorological and biophysical 
variables from remotely sensed platforms.  

The Physiological Principles Predicting Growth (3-PG) model of Landsberg and Waring (1997) is also 
an LUE model and can be driven by remotely sensed and meteorological data. This model, focused 
on forest production, makes a number of empirically well-supported simplifications to predict GPP, 
NPP and forest growth.  

All of the models discussed so far included an estimate of soil moisture availability as one of the 
factors reducing LUE.  

In the following subsections, we review the principal literature on LUE models and note the key 
features of various widely used models, including those used operationally, and some other models 
that have introduced potentially useful innovations. 

3.2. THE MODIS GPP AND NPP PRODUCTS 

By far the most widely used remotely sensed primary production data products for scientific 
applications today are the MODIS GPP and NPP (MOD17) products (Running et al., 2004; Zhao et 
al., 2005). The most recent (2015) user’s guide to the MOD17 products can be found at: 
http://www.ntsg.umt.edu/sites/ntsg.umt.edu/files/modis/MOD17UsersGuide2015_v3.pdf 
MODIS GPP specifies a maximum LUE which varies per biome. This value is multiplied by two 
scalars formulated as ramp functions: a linearly declining function of daily vapour pressure deficit 
(vpd), between biome-specific limit values where the function equals one or zero, and a linearly 
increasing function of daily minimum temperature, between biome-specific limit values where the 
function equals zero or one. Soil moisture effects are not considered: thus implicitly, soil moisture 
effects are considered to be accounted for in the remotely sensed fAPAR, and/or the effect of vpd 
on photosynthesis. The calculations make use of a land-cover classification and a Biome Parameter 
Look-Up Table (BPLUT) which recognizes 10 biomes. The required meteorological data, including 
IPAR (incoming solar shortwave radiation multiplied by 0.45), are supplied by the Global Modeling 
and Assimilation Office (GMAO) of the US National Aeronautics and Space Administration (NASA) at 
a 1˚ x 1.25˚ grid resolution. These data are smoothly interpolated to the finer (1 km) spatial 
resolution of the remotely sensed fAPAR data. The spatial and temporal resolution (8 days) of the 
product are set by the fAPAR data, which are obtained from the MODIS FPAR/LAI product.  

Biome-specific model parameter values for MODIS GPP were based on literature-derived estimates 
used in the process-based BIOME-Biogeochemical Cycles model (BIOME-BGC: Running and Hunt, 
1993). Thus, CO2 flux data were not used in the initial calibration of the remote-sensing based 
model. However, the MODIS GPP product has been very extensively and independently evaluated 
by comparison with GPP derived from flux measurements. A number of these evaluation studies 
are cited in the user guide. Verma et al. (2014) included MODIS GPP – and also a version called 
MOD17-Tower, which was pre-calibrated against flux measurements – in a systematic global 
comparison with flux data-derived GPP. MODIS GPP was included in the set of seven LUE models 
compared globally with flux data-derived GPP by Yuan et al. (2014). Tang et al. (2015) undertook a 
comprehensive evaluation of MODIS GPP against flux data-derived GPP for forest ecosystems. 
Tagesson et al. (2017) showed that MODIS GPP greatly underestimates flux data-derived GPP in the 
Sahel, apparently due to unrealistically low maximum LUE assigned to semi-arid ecosystems. 

The approach taken in the MODIS NPP product to derive NPP from GPP relies on separately 
modelling autotrophic respiration, which is separated into maintenance and growth components. 
NPP is then the difference between modelled GPP and modelled total autotrophic respiration. 

http://www.ntsg.umt.edu/sites/ntsg.umt.edu/files/modis/MOD17UsersGuide2015_v3.pdf
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Maintenance respiration in the model depends on leaf area index (LAI), obtained from the MODIS 
FPAR/LAI product, and biome-specific values of specific leaf area, the ratio of fine root mass to leaf 
mass, base maintenance respiration rates for leaves and fine roots, and a Q10 value that specifies 
the steepness of an assumed exponential relationship to temperature. In the current version of 
MODIS NPP, the Q10 of leaf maintenance respiration is a decreasing function of growth 
temperature. This is said to reflect respiratory acclimation, although Medlyn (2011) pointed out 
that the use of this function in fact further steepens the modelled negative response of NPP to 
temperature. Other components of maintenance respiration assume a fixed Q10. Additional biome-
specific information is used to infer annual growth respiration, which is then combined with 
annually integrated estimates of GPP and autotrophic respiration to yield annual NPP. Evaluation of 
NPP is considerably more difficult than evaluation of GPP, as the available data are far more 
limited. A number of compilations of annual NPP measurements have been made, however, and 
these have been used as a benchmark for MODIS NPP. 

The MODIS GPP and NPP products were the first global and widely disseminated products of their 
kind. They represented a major technical advance, and now underpin a large number of high-
profile scientific publications. However, criticisms have been made of some recent studies in which 
key assumptions underlying these products were overlooked. The study by Zhao and Running 
(2010) for example was criticized by Samanta et al. (2011) and Medlyn (2011), as the decline in NPP 
during the 2000 to 2009 period reported by Zhao and Running (2010) was not present in the 
remotely sensed data. It was, instead, a consequence of the model’s high sensitivity of 
maintenance respiration to temperature. Prentice (2013) noted that this sensitivity must be too 
high, because the interannual variability of MODIS NPP is so large as to fully account for the 
observed year-to-year variability of the atmospheric CO2 growth rate – allowing no room for the 
effect of temperature variability on the soil decomposition rate, which is generally understood to 
be the key factor modulating the CO2 growth rate (e.g. Wenzel et al., 2014).  

Another emerging problem is the weak increase over time shown in the MODIS GPP and NPP 
products, which contrasts with the strong increase shown by most process-based models (Anav et 
al., 2015) and with evidence for increasing LUE as a principal driver of the high-latitude seasonal 
cycle of atmospheric CO2 (Graven et al., 2013; Thomas et al., 2017). In process-based models, GPP 
and NPP increase primarily as a consequence of the rising atmospheric CO2 concentration. Smith et 
al. (2016) asserted that process-based models overestimate the stimulatory effect of rising CO2 
concentrations on NPP. They reached this conclusion by comparing process-based model outputs 
with the much weaker trend shown by MODIS NPP. However, MODIS GPP and NPP do not allow 
CO2 concentration to influence LUE; therefore, the only possible CO2 influence in these products is 
via increasing fAPAR. There is a worldwide ‘greening’ trend which has been attributed in part to the 
effect of CO2 in increasing NPP and water use efficiency (Donohue et al., 2013; Ukkola et al., 2015; 
Zhu et al., 2016). But Free Air Carbon Enrichment (FACE) experiments have shown that the 
principal effect of enhanced CO2 on primary production in forests is through increased LUE 
whereas increased LAI or fAPAR are much less important. Thus, the discrepancy noted by Smith et 
al. (2016) does not mean that process-based models overestimate the effect of CO2 on NPP. 
Instead it means that MODIS NPP underestimates this effect (De Kauwe et al., 2016a), as a 
consequence of its design. 

3.3. C-FIX AND THE DRY MATTER PRODUCTIVITY PRODUCT 

Veroustraete et al. (1994, 2002) introduced the C-Fix model, a pioneer effort and the forerunner of 
the present-day Dry Matter Productivity (DMP) algorithm (Swinnen et al., 2015) currently provided 
by CGLOPS1. The original version of C-Fix was a LUE model for GPP in which a maximum LUE (a 
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single global value) was reduced through multiplication by scalars representing the effects of 
suboptimal temperature and water availability. Values for NPP were obtained from GPP using an 
empirical linear function of temperature to account for the fraction of GPP lost to autotrophic 
respiration.  

C-Fix also included an attempt to account for an effect of rising atmospheric CO2 concentration on 
photosynthesis via the FvCB model. However, the effect was implemented by way of the CO2-
dependence of the Rubisco-limited rate of photosynthesis, which is the rate measured at saturating 
light intensity (De Kauwe et al., 2016b). This rate depends steeply on CO2. But it is not the rate 
actually realized in the field because the light- and Rubisco-limited rates are approximately 
balanced for typical daytime field conditions (Maire et al., 2012). The light-limited rate depends on 
CO2 as well, but less steeply than the Rubisco-limited rate. The original CO2 response function in C-
Fix therefore presumably overestimates the effect of CO2 on GPP. However this overestimation 
may be tempered by the fact that no distinction is made between leaf-internal and ambient CO2. 
The steepness of the response is thereby less than it would have been if leaf-internal CO2 had been 
used.  

Another limitation of C-Fix is its assumption of a universal, strongly peaked response of GPP to 
temperature with an optimum around 22˚C – thus not accounting for thermal acclimation, and 
necessarily underestimating GPP in hot climates. But C-Fix was designed for use in temperate 
forests and has in fact only been applied in temperate regions. Veroustraete et al. (2002) 
successfully compared C-Fix GPP predictions with flux data from forests in different regions of 
Europe. 

C-Fix was not deployed operationally, but it provided the initial basis for the present operational 
DMP product (Swinnen et al., 2015). In DMP, IPAR is determined from solar shortwave radiation by 
applying a factor 0.48, and APAR is obtained by multiplying IPAR by a remotely sensed estimate of 
fAPAR as in other models. Daily meteorological data are supplied by the European Centre for 
Medium range Weather Forecasting (ECMWF) on a 0.25˚ grid, and bilinearly interpolated to the 
remote-sensing pixels. A single global maximum value is assigned to the maximum LUE. This is 
modified by a temperature function and (for NPP) a further temperature function. These two 
functions are unchanged from C-Fix: production is therefore likely to be underestimated in hot 
climates, due to the ‘temperate’ location of the peak of the temperature response function for 
LUE. There is no effect of water availability (apart from that manifested in changes in fAPAR) and 
the CO2 response of C-Fix is not implemented. C4 photosynthesis is not distinguished.  

3.4. SOME RECENT DEVELOPMENTS AND TRENDS 

Numerous LUE models have been developed in recent years with the expressed intention of 
achieving improved consistency with CO2 flux-based measurements of GPP. These measurements, 
when suitably analysed, can provide more information about the controls of LUE than is utilized in 
an ‘end-of-pipe’ comparison of modelled and measured values of GPP.  

The EC-LUE model (Yuan et al., 2007) requires only four quantities as input: fAPAR (which is 
estimated from the Normalized Difference Vegetation Index, NDVI), IPAR, air temperature and the 
Bowen ratio, which was inferred from other remotely sensed measurements (Yuan et al., 2007). In 
a later version the Bowen ratio was replaced by the ratio of actual evapotranspiration to net 
radiation (Yuan et al., 2010), which proved to be more robustly estimated than the Bowen ratio. 
EC-LUE has the merit of simplicity, as well as outperforming MODIS GPP in comparisons with flux 
measurements.  
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Further innovations in recent LUE models include consideration of seasonal variations in maximum 
LUE (Garbulsky et al., 2010; Lin et al., 2017), accounting for thermal acclimation (McCallum et al., 
2013), the inclusion of an effect of diffuse light fraction on LUE (Donohue et al., 2014), and the use 
of a MODIS canopy conductance product to include effects of vpd and soil moisture availability 
(Yebra et al., 2015).   

These various recent model developments differ in the extent to which they achieve good 
empirical results by increasing complexity and adding to the number of unknown parameters, 
versus the alternative of trying to make modelling more robust through the application of theory 
that can often simplify models and reduce the number of unknown parameters. McCallum et al. 
(2009), for example, argued for the inclusion of all of those processes that have been shown to 
improve model performance. An opposite view (Prentice et al., 2015) is that this is a flawed 
approach that tends always to increase uncertainty, rather than to reduce it, as the number of 
parameters increases and the transparency of the model decreases. 

3.5. THE SCARF MODEL 

Ogutu et al. (2013) introduced the Southampton Carbon Flux (SCARF) model, a new LUE model 
with a number of specific advantages for potential operational use. First, the remote sensing data 
used to drive the model are the MERIS Total Chlorophyll Index (MTCI). MTCI was considered by 
Ogutu et al. (2013) to offer an improvement over more standard ‘greenness’ measures as it 
explicitly relates to the abundance of green, photosynthesizing tissues. They argued that other 
measures of fAPAR used in LUE models include light absorption by non-green tissues that do not 
contribute to GPP. Second, the model substantially avoids spatial discontinuities and the use of a 
look-up table for biome-specific parameters by (a) adopting universal intrinsic quantum efficiency 
values defined in terms of the FvCB model for C3 and C4 plants respectively, and (b) applying 
universal temperature and CO2 response functions for C3 plants, and vpd response functions for C3 
and C4 plants. The CO2 and temperature response functions for C3 plants were derived from the 
FcVB model, but an empirical formulation was used for the vpd response functions. A look-up table 
(together with a number of simplifying assumptions) was used to estimate the fraction of C3 versus 
C4 photosynthesis on a per-pixel basis. The model was evaluated successfully against GPP data 
derived from flux measurements across Europe and the USA.  

Ogutu and Dash (2013) showed that the fidelity of flux measurements to the FvCB model at two 
study sites was close enough that reasonable estimates of ‘green’ fAPAR could be obtained by 
inversion of the model, i.e. estimating the fAPAR required to produce the observed patterns of 
GPP. This finding strongly supports the notion that LUE models could avoid the need for multiple 
unknown parameters (including the need for look-up tables for vegetation types, apart from the 
issue of C3 versus C4 photosynthesis) through application of the FvCB model. 

3.6. THE BESS MODEL 

The Breathing Earth System Simulator (BESS) by Ryu et al. (2011) represents an advanced modelling 
system for GPP and evapotranspiration (ET) and included many novel features. The model was 
designed to be the ‘first system that harmonizes and utilizes MODIS Atmosphere and Land 
products on the same projection and spatial resolution over the global land’ (Ryu et al., 2011, p. 1), 
thereby utilizing remotely sensed solar radiation and other meteorological data (from MODIS) and 
avoiding the need to interpolate such data from a coarse spatial grid. The model was described as 
calibration-free, that is, no parameters were to be estimated from flux data; all were to be 
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specified independently. A global selection of 33 flux measurement sites was used to 
independently evaluate the model’s predictions of both GPP and ET. 

BESS is more complex than any of the other models discussed in this review. It includes an explicit 
radiative transfer model for solar radiation in the canopy; a ‘two-leaf’ model that distinguishes the 
properties of sun and shade leaves, which has been claimed to provide better accuracy, especially 
in modelling the differential penetration of diffuse versus direct light into the canopy and the 
consequences for photosynthesis; consideration of foliar clumping effects on photosynthetic light 
absorption (making use of a satellite-derived foliar clumping index product); and an extended FvCB 
model, including light-, Rubisco- and triose phosphate utilization-limited rates of photosynthesis. 
However, this complexity comes at a considerable cost, both computational, and in terms of data 
availability.  

The model was set up on the Microsoft Azure cloud computing system, as it was considered to be 
infeasible on the supercomputing resources available at Berkeley. Many compromises were 
unavoidably made. A look-up table was used to provide values of many parameters, including the 
carboxylation capacity (Vcmax) over much of the Earth’s surface. For some biomes Vcmax was 
estimated from foliage N, which in turn was estimated from vegetation albedo – this approach 
relying on the (questionable) relationship between foliar N and Vcmax. The ratio of leaf-internal to 
ambient CO2 was set at constant values for C3 and C4 plants respectively, thus disregarding the well-
established effect of vpd on this ratio. Some external data, not available from MODIS, were 
obtained from a coarsely gridded re-analysis product. Thus, although BESS includes many advanced 
features and the ideal of obtaining all required information from remote sensing remains worth 
pursuing, this ideal was not in fact realized. This approach does not appear to provide a useful way 
forward for the development of operational systems at the present time. 
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CHAPTER 4 THE P MODEL: DESCRIPTION OF THE PROPOSED METHOD 

4.1. THE P MODEL 

The P model is fully derived and described by Wang et al. (2016a), and aspects of the underlying 
theory have been applied by Keenan et al. (2016) and Wang et al. (2016b). Unlike any of the LUE 
models discussed above, the P model possesses all of the following desirable attributes for a ‘next-
generation’ primary production monitoring system: 

 An explicit derivation from the FvCB model, and a clear relationship to a well-established 
functional form for stomatal behaviour – both elements required for a prediction of GPP. 

 A representation of physiological CO2 effects on photosynthesis that is consistent with both 
the FvCB model and results from FACE experiments. 

 No distinctions among plant functional types and biomes (except for the well-established 
differences between C3 and C4 plants), eliminating the need for spatial discontinuities 
induced by the use of a land-cover classification and look-up table. 

 Demonstrated success in representing flux-derived GPP across different biomes at monthly 
time scales. 

The model is extremely parameter-sparse, while achieving a fidelity to data comparable with other 
models. This combination of simplicity with accuracy has been achieved through the development 
of new theory that accounts for the observed environmental dependencies of the ratio (henceforth 
termed χ) of the leaf-internal (ci) to ambient (ca) partial pressures of CO2 in C3 plants; and the 
acclimation of photosynthetic parameters in space and time. Both aspects of the theory rely on 
eco-evolutionary optimality concepts to derive testable hypotheses, which in turn yield good 
agreement with observations from field measurements and field experiments. 

4.1.1. PREDICTING χ WITH THE LEAST-COST HYPOTHESIS 

Prentice et al. (2014) tested a quantitative theory based on a hypothesis first proposed by Wright 
et al. (2004), that plants should minimize the sum of the unit costs (per unit of carbon assimilation) 
of maintaining the capacities for carboxylation (proportional to Vcmax) and water transport 
(proportional to the maximum rate of transpiration). Transpiration is a requirement for 
photosynthesis because stomata have to open in order to allow CO2 to diffuse towards the 
chloroplasts. In so doing, they draw water from the soil to replenish that lost by evaporation 
through the stomata. Prentice et al. (2014) showed that this ‘least-cost’ criterion leads to an 
optimal value of χ as a function of environmental variables (temperature and vpd) that is 
independent of PAR, and almost independent of ca. This value is given by: 

χ  =  Γ*/ca  +  (1 – Γ*/ca ) ξ/(ξ + √D),          (1a) 

ξ  =  √{β(Κ + Γ*)/1.6η*}            (1b) 

where Γ* and K are respectively the photorespiratory compensation point and the effective 
Michaelis-Menten coefficient of Rubisco (both known functions of temperature and atmospheric 
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pressure), β is an empirical constant (estimated from δ13C data: Wang et al., 2016a), η* is the 
viscosity of water relative to its value at 25˚C (a known function of temperature), and D is the vpd. 
As Γ* << ca under field conditions, and K >> Γ*, equation (1) is well approximated by: 

χ  =  ξ/(ξ + √D)             (2a) 

ξ  =  √{βΚ/1.6η*}             (2b) 

Equation (2a) is identical with the ‘universal stomatal model’ proposed by Medlyn et al. (2011) and 
tested against a globally distributed set of gas-exchange measurements by Lin et al. (2012). Lin et 
al. (2012) also showed that ξ (there called g1) increases approximately exponentially with 
temperature. This was predicted by Medlyn et al. (2011). But it also follows from equation (2b), 
because of the temperature dependencies of both Κ (increasing) and η* (decreasing). 

Wang et al. (2016a, b) noted that the optimal value of χ should also depend on elevation, acting 
through the effects of changing atmospheric pressure on the partial pressures of both oxygen, 
which competes with CO2 for the Rubisco catalytic sites, and water vapour. Wang et al. (2016a) 
used a large data set of leaf stable carbon isotope (δ13C) measurements to show that all three 
environmental dependencies are correctly predicted by the model. The predicted partial 
derivatives of ln χ/(1 – χ) are 0.055 K—1 for temperature, –0.5 for ln vpd, and –0.08 km—1 for 
elevation. These partial derivatives were independently estimated from the δ13C data by multiple 
linear regression, yielding 95% confidence intervals that enclose the predicted values: (0.052, 
0.046) for temperature, (–0.61, –0.48) for ln vpd, and (–0.08, –0.13) for elevation. 

4.1.2. PREDICTING GPP WITH THE CO-ORDINATION HYPOTHESIS 

Wang et al. (2016a) also made use of the co-ordination hypothesis, which proposes that 
acclimation (on time scales of weeks to months) should ensure the similarity of Rubisco- and light-
limited photosynthetic rates. This long-standing idea is well supported by independent studies 
(Haxeltine and Prentice, 1996; Dewar, 1996; Maire et al., 2012) and has a number of implications 
that are useful for modelling. These include a simple method to predict the spatial and temporal 
acclimation of Vcmax as a function of IPAR and temperature, meaning that Vcmax does not have to be 
specified independently. A variant of this principle is already included in the widely used Lund-
Potsdam-Jena (LPJ) dynamic global vegetation model (Sitch et al., 2003) and models derived from 
LPJ, including the LPX global carbon cycle model (Stocker et al., 2012), although its implications 
have not been much explored by users of these models. 

Wang et al. (2016a) further showed that a cost-benefit analysis of the maximum electron transport 
capacity Jmax – which can be measured in the field by artificially increasing ca to a high level – leads 
to a predictable optimal ratio of Jmax to Vcmax that declines steeply with growth temperature, in 
accordance with experimental findings. The mathematical optimization was performed using the 
Smith formula relating the electron transport rate to absorbed PAR at the leaf level. Inclusion of 
this acclimation of Jmax has been found to exert a modest but significantly beneficial effect on the 
prediction of Vcmax. Similar results have been obtained recently using the alternative empirical light 
response curve (non-rectangular hyperbola with curvature parameter Θ) that is more commonly 
used in conjunction with the FvCB model. This alternative has not yet been implemented in the P 
model. Regardless of which light-response curve is used, the practical consequence is the Jmax, like 
Vcmax, does not need to be independently specified. 

Together, the elements described above define a model to predict GPP. This is achieved simply by 
equating the light- and Rubisco-limited rates of photosynthesis in the FvCB model (implicitly over 
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an acclimation period of days to weeks, compatible with the time scale of remotely sensed fAPAR 
products), and re-arranging to eliminate χ, Vcmax and Jmax (Wang et al., 2016a): 

GPP = φ0(C3)  fAPAR  IPAR  m √{1 – (c*/m)2/3}        (3a) 

where φ0(C3) is the dimensionless intrinsic quantum efficiency of C3 photosynthesis (taken to be 
0.085 by Wang et al., 2016a), c* is a parameter representing the unit cost of maintaining the 
capacity for electron transport, and 
 
m  =  {ca – Γ*} / {ca + 2Γ* + 3Γ* √[1.6 η* D β–1 (K + Γ*)–1]}       (3b) 

Equation (3) has the mathematical form of a LUE model: that is, for a given set of environmental 
conditions (ambient atmospheric CO2 concentration, temperature, atmospheric pressure and vpd) 
modelled GPP is proportional to the absorbed PPFD. But unlike other LUE models, equation (3) is 
explicitly defined in terms of the FvCB model of photosynthesis. Although GPP at time scales of 
minutes to hours (as seen, for example, during the diurnal cycle of CO2 flux) has a saturating 
response to IPAR, GPP at longer (e.g. weekly) time scales has a linear response to IPAR conferred by 
the acclimation of Vcmax. This principle was previously articulated by Haxeltine and Prentice (1996) 
and Dewar (1996), and can provide a theoretical basis for LUE models (Medlyn, 1998). Equation (3) 
gives mathematical expression to the principle, and has proved to be at least as effective in terms 
of simulating flux-derived monthly GPP as other LUE models – as shown in Wang et al. (2016), and 
in Table 1.  

Table 2: Goodness of fit (R2) and root-mean-squared error of prediction (RMSE) statistics for P 
model (Wang et al., 2016) predictions of monthly GPP, compared with results from several LUE 
models tested against flux measurements by Yuan et al. (2014) (data provided by H. Wang). 

 

4.1.3. EFFECTS OF CO2 IN THE P MODEL 

It follows from the co-ordination hypothesis that the benefit of rising CO2 for the LUE of GPP by C3 
plants will be limited to its effect on the light-limited rate of photosynthesis. This effect is predicted 
by the P model, with no additional parameter requirements, including its well-known interaction 
with temperature and vpd. Effects of CO2 on different photosynthesis metrics, as measured in 12 
FACE experiments, were the subject of a meta-analysis by Ainsworth and Long (2005). They 
showed (for a 200 ppm increase in ca) that LUE changed by an average of + 12 ± 9 %, instantaneous 
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of reported median values from seven other LUE models, as reported by Yuan et al.
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 R
2
 RMSE 

 This study Yuan et al. This study Yuan et al. 

All ecosystems 0.551 0.553 ± 0.096 2.094 2.428 ± 0.275 

Shrubland 0.772 0.255 ± 0.175 2.165 1.866 ± 0.915 

Deciduous broadleaf forest 0.588 0.703 ± 0.094 2.766 2.919 ± 0.450 

Evergreen broadleaf forest 0.341 0.119 ± 0.063 2.046 2.961 ± 0.801 

Evergreen needleleaf forest 0.535 0.501 ± 0.108 1.856 2.384 ± 0.437 

Grassland 0.572 0.631 ± 0.076 2.025 2.109 ± 0.280 

Mixed forest 0.700 0.637 ± 0.068 1.824 2.339 ± 0.325 



CHAPTER 4 THE P MODEL: description of the proposed method 
 

 
23 

water-use efficiency by + 54 ± 17 %, and stomatal conductance by – 20 ± 3 %. Corresponding 
predictions with the P model were + 17%, + 55% and – 15% (data provided by H. Wang). 

4.1.4. SOIL MOISTURE EFFECTS 

In common with many LUE models, including those used operationally, the P model does not take 
account of soil moisture effects – except in so far as they are manifested through changes in fAPAR. 
Analysis of flux-based GPP measurements at most of the sites considered by Wang et al. (2016a), 
including a number of sites with pronounced dry seasons, has shown that there is no regular fall-off 
of LUE with drought. However, this is not universal. Some ecosystems (for example, some tropical 
savannas) do show reduced LUE in the dry season. Moreover, extreme droughts to which 
ecosystems are not well adapted are expected to suppress LUE by a combination of reduced χ and 
reduced Vcmax, as has been widely observed in drying-down experiments (Zhou et al., 2013). 
Therefore, in common with other products the initial P model implementation is likely to 
overestimate dry-season GPP in some ecosystems, and to underestimate the effects of extreme 
droughts on GPP (B. Stocker, unpublished results). 

4.1.5. C4 PHOTOSYNTHESIS 

The simplest way to implement C4 photosynthesis makes just two modifications to equation (3). 
First, a generic φ0 value suitable for C4 plants must be chosen (taken to be 0.055 in current work). 
Second, ca is made arbitrarily large. These two changes lead to a simplified equation for C4 
photosynthesis: 

GPP = φ0(C4)  fAPAR  IPAR           (4) 

C4 photosynthesis can benefit from rising CO2 under conditions of limited water availability, 
because water-use efficiency increases even if photosynthesis does not. However, this benefit is 
expected to be fully realized in increasing fAPAR. 

4.1.6. MODELLING ABOVE-GROUND BIOMASS PRODUCTION 

The translation from GPP to ABP (in carbon units, easily modified to dry matter units) can be 
summarized by the formula ABP  =  (1 – fBG) x CUE x GPP, where fBG is the fraction of NPP allocated 
below ground (including root exudation, as well as allocation to the maintenance and turnover of 
roots) and CUE is the carbon use efficiency, i.e. the ratio of NPP to GPP. (This formula disregards 
the fraction of NPP allocated to VOC emission, which is normally much smaller than fBG.) 

The additional terms required to calculate ABP from GPP are much less well understood from a 
theoretical and quantitative point of view than the terms in the equations for GPP itself. However, 
there is evidence for two competing effects of temperature on the ratio of ABP to GPP. On the one 
hand, acclimation of Vcmax results in a weakly increasing Vcmax with growth temperature (Atkin et al., 
2015); and leaf dark respiration varies approximately in proportion to Vcmax, according to the FvCB 
model. This effect, by itself, would cause CUE to decrease with increasing temperature. On the 
other hand, warm conditions increase the availability of soil nutrients by enhancing the rates of 
microbial metabolism, thus diminishing the need for plants to allocate carbon below ground – and 
thereby reducing fBG (Gill and Finzi, 2017).  
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A statistical analysis of the NPP data provided by Michaletz et al. (2014) yielded the equations NPP 
≈ 0.542 GPP + 0.0127 (TC – 25) and ABP ≈ 0.535 GPP + 0.0074 (TC – 25), where TC is the growth 
temperature in ˚C (analysis by H. Wang). These preliminary results suggest that the effect of 
increased nutrient availability with temperature dominates over the effect of increased leaf 
respiration rate. There is substantial scatter around these relationships that likely reflects 
variations in soil fertility and management regimes (Vicca et al., 2012; Campioli et al., 2015). 
However, this general approach – applied to an improved data set under development by the 
University of Antwerp group – will allow us to derive an empirically well-founded, albeit 
approximate, prediction scheme for ABP. It is expected that soil fertility, indexed by pH and/or C:N 
ratio, will be a factor in the scheme.  

The general approach outlined above is preferred to trying to explicitly model total autotrophic 
respiration, which has proved to be a major problem in the MODIS NPP product. Our approach 
implicitly assumes that because of the ubiquitous acclimation of autotrophic respiration to 
temperature, the instantaneous response of respiration rates to temperature (as expressed in the 
Q10 factor employed by many models, including MODIS NPP) is largely irrelevant to predicting the 
ratio of either ABP or NPP to GPP – just as the instantaneous responses of photosynthetic rates to 
light and temperature do not determine the responses of actual photosynthetic rates under field 
conditions. 

4.2. DATA NEEDS TO IMPLEMENT THE P MODEL 

Here we list the data requirements for the initial global-scale implementation of the P model. 

 fAPAR per pixel and dekad or month: these data have been obtained initially from SeaWiFS and 
MERIS GVI data, and will eventually be obtained from Sentinel-3. 

 Meteorological data: daily total ‘global’ (solar shortwave) radiation, daily minimum and 
maximum temperature, and daily absolute vapour pressure. These data will be obtained 
initially at 0.25˚ resolution from the ECMWF data stream, and interpolated to the pixel scale, in 
the same way as is currently implemented for the DMP product. IPAR will be estimated from 
global radiation as in the DMP product, and converted to PPFD for input to the P model. 

 Ambient partial pressure of CO2: a single global, time-varying, value will be obtained from the 
international CO2 monitoring network and used as input to the P model. (However, see the 
discussion in chapter 4.3 regarding the uncertainty of ca under field conditions.) 

 C3 versus C4 photosynthesis: the need for data will be circumvented by providing both values 
for every pixel. 

Subsequent developments under consideration for later implementation include: 

 Implementation of a remotely sensed soil moisture effect on GPP, through a modification of 
the P model. Although in relatively moist soils the actual soil moisture content has little effect 
on GPP, very low soil moisture can negatively affect GPP in addition to the effect of high vpd 
(as noted in section 4.1.4 above). This soil moisture effect is not incorporated in existing 
operational products which, therefore, share a common bias towards overpredicting GPP 
under drought conditions. This bias could be mitigated by using a remotely sensed soil 
moisture product as an additional driver of the P model. 

 Substitution of remotely sensed land surface temperature for air temperature as a driver of the 
P model. This is desirable for two reasons. First, it would avoid dependence on temperature 
values interpolated from a coarser grid. Second, leaf temperature rather than air temperature 
is the actual driver of photosynthesis. Most photosynthesis is carried out by the leaves in the 
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upper canopy. Remotely sensed land surface temperature over continuous vegetation provides 
information on the temperature of the upper-canopy leaves which is, therefore, directly 
relevant to GPP. Over sparse canopies, remotely sensed land surface temperature combines 
signals from the vegetation and soil surface and therefore may need to be corrected in some 
way based on the observed fAPAR. 

 Use of either a remotely sensed digital elevation model, or remotely sensed surface pressure, 
to account for atmospheric pressure effects on photosynthesis via the P model. This would 
improve the accuracy of GPP values for high elevations. 

 For the ABP model: use of global soils data, to be translated into scalars reflecting the effect of 
soil fertility on the ratio of ABP to GPP. Soil fertility can be indexed e.g. by pH (low-pH soils tend 
to be less fertile) or C:N ratio (more fertile soils tend to have narrower C:N ratios). Machine 
learning methods have been used to combine national soil survey mapping with soil profile 
measurements at 250 m resolution (https://www.soilgrids.org) and provide the best available 
source of global data on soil types and properties. 

4.3. AN APPROACH TO ESTIMATING PER-PIXEL UNCERTAINTY IN GPP 

Two independent methods will be applied to generate per-pixel uncertainties, taking into account 
that on the one hand, the P model algorithm is derived from first principles and consists of a single 
equation, which can be differentiated with respect to all of the uncertain quantities that it 
contains; and on the other hand, the algorithm’s credibility is assured by its ability to predict 
independently measured GPP, which will be quantified. 

Thus two methods will be used to quantify uncertainties in GPP. The first method will be a classical 
Type B uncertainty evaluation, derived analytically and producing a per-pixel uncertainty value 
explicitly considering the known sources of uncertainty in different quantities entering the model 
and combining them using established principles. The second can be considered as a Type A 
evaluation in so far as data from different observation periods at a flux measurement site, and data 
from flux different sites, can be considered as stochastic realizations of the same underlying 
processes. Uncertainty estimates obtained by the second (Type A) method may include 
consequences of processes that are not explicitly included in the GPP algorithm, potentially leading 
to wider uncertainty estimates than those obtained by the first (Type B) method. A criterion for this 
approach to work well is that the estimated uncertainty should be based on a sufficiently large and 
diverse ensemble of flux sites. Implicitly, errors in flux measurements and their partitioning to GPP 
would be included in the Type A uncertainty assessment. 

4.3.1. UNCERTAINTY EVALUATION BASED ON THE P MODEL ALGORITHM 

Equations (3) and (4) contain various input variables and parameters whose uncertainty needs to 
be quantified. In addition, a number of the photosynthetic parameters are temperature-
dependent. Uncertainties in the temperature dependencies can be isolated from uncertainty in the 
temperature data by applying the following standard formulae: 

Γ*  =  Γ*[25] exp {(ΔHΓ*/R)(1/298.15 – 1/T)}         (5) 

η*  =  exp {580 [1/(T – 138)] – [1/(160]}          (6) 

K    =  KC (1 + O/KO)             (7) 

KC  =  KC[25] exp {(ΔHK_C/R)(1/298.15 – 1/T)}         (8) 

https://www.soilgrids.org/
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KO  =  KO[25] exp {(ΔHK_O/R)(1/298.15 – 1/T)}         (9) 

where R is the universal gas constant (8.314 46 J mol–1 K–1), T is the canopy temperature (K), KC is 
the Michaelis-Menten coefficient for carboxylation (Pa), KO is the Michaelis-Menten coefficient for 
oxygenation (Pa), O is the partial pressure of oxygen (209 460 µmol mol–1 x atmospheric pressure in 
Pa); Γ*[25], KC[25] and KO[25] are the values of Γ*, KC and KO, respectively, at 298.15 K; and ΔHΓ*, 
ΔHK_C and ΔHK_O are the corresponding activation energies (J mol–1). Moreover, if D is estimated 
from absolute water vapour pressure (ea) and saturation vapour pressure (es), then: 

D  =  es(TC) – ea             (10) 

where es  =  es(0) exp {17.27 TC/(TC + 237.3)} (Pa) and TC = T – 273.15 K. 

Those quantities that are either defined precisely, or known with an uncertainty that is effectively 
negligible in this context, have been assigned numerical values above and will not be considered 
further. In the following section we describe the sources of data to estimate standard uncertainties 
for each of the remaining quantities for use in the initial GPP product. The formulation above 
allows each of the sources of uncertainty to be considered independent and, therefore, 
uncertainties from each source to be combined using the standard formula: 

u2(y)  =    Σi (∂f/∂xi)
2 u2(xi)           (11) 

where u(y) is the standard uncertainty of GPP, ∂f/∂xi is the sensitivity of GPP to variable xi 
(obtained by differentiating equation (1) with respect to each uncertain variable and evaluating the 
partial derivative at the current central value of xi), and u(xi) is the standard uncertainty of xi. 

4.3.2. DATA UNCERTAINTIES 

fAPAR: standard uncertainties provided with the EO products (initially, MERIS GVI) will form part of 
the data input. 

Uncertainties of IPAR, T and ea are provided with the meteorological data by ECMWF. T will be 
corrected for the expected offset between canopy and air temperature following the general 
theoretical form presented by Michaletz et al. (2016) and its intrinsic uncertainty will be combined 
with an uncertainty estimate based on the statistics of the fitted global relationship between 
canopy and air temperature, based on point measurements, presented in Michaletz et al. (2016). 

Spatial and temporal variations in ca can be obtained via the integrated CO2 measurement data set 
maintained by the US National Oceanic and Atmospheric Administration (NOAA): 
http://www.esrl.noaa.gov/gmd/ccgg/globalview/co2/co2_intro.html  
The largest uncertainty in ca however derives not from the systematic deviations from a single 
global ca that are observed by the monitoring network, but rather from local, non-measured 
variations due to ground-level sources and sinks in soils and vegetation and local industrial and/or 
transport sources. This uncertainty will be quantified approximately based on a literature survey. 

Parameter uncertainties 

β has been estimated based on leaf δ13C data, from the intercept of the regression of ln χ/(1 – χ) 
against environmental predictors (Wang et al., 2016a). The uncertainty of this estimate will be 
assessed from the standard error of the intercept, and inflated to account for uncertainty in the 

http://www.esrl.noaa.gov/gmd/ccgg/globalview/co2/co2_intro.html
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conversion from stable isotope measurements to χ. c* has been estimated from published values 
of electron transport capacity (Jmax) and carboxylation capacity (Vcmax) under a variety of 
experimental growth conditions (Kattge and Knorr, 2007; Wang et al., 2016a). The uncertainty of c* 
will be estimated based on a regression of experimentally determined Jmax/Vcmax values against 
growth temperature.  

The remaining parameters of equations (3) and (4) are standard elements of the FcVB 
photosynthesis model. They are accurately measured and show little variation among different 
plant species and measurement techniques. Nonetheless, they are subject to some uncertainty, 
which will be taken into account as described below. 

φ0(C3) and φ0(C4): published surveys of measurements on various species provide the basis to 
quantify the uncertainty in these parameters (Skillman, 2008; Zhu et al., 2010), which is 
approximately normally distributed across species within each photosynthetic pathway. 

Γ*[25], KC[25], KO[25] and the corresponding activation energies: although most recent modelling 
studies have used the in vivo values determined by Bernacchi et al. (2001), two other modern 
experimental data sets give slightly different reference values and activation energies (De Kauwe et 
al., 2016b). There are also published studies showing of variation in Rubisco kinetic properties 
across species from different environments (e.g. Hermida-Carerra et al., 2016). An estimate of the 
uncertainty of all six quantities will be derived based on this recent literature. 

4.3.3. COMBINING UNCERTAINTIES 

Derivatives of equation (1) with respect to each uncertain quantity will be obtained analytically. For 
constant quantities such as the two φ0 values the derivative will be pre-calculated. For quantities 
that vary in time and/or space, the derivative will be evaluated as part of the standard workflow. 
The outputs of the workflow per time-step and pixel will include the central estimate of GPP from 
equation (1) and its composite standard uncertainty from equation (2) with elements calculated in 
the manner described above.  

4.3.4. UNCERTAINTY EVALUATION BASED ON A COMPARISON OF MODELLED AND MEASURED GPP 

Sections 4.3.1 to 4.3.3 above outline the proposed method for calculation of a Type B, per-pixel 
uncertainty for modelled GPP. The alternative Type A approach involves defining a model for total 
uncertainty based on a statistical comparison of observed and modelled GPP across space and 
time. The comparative analysis of modelled and measured GPP by Wang et al. (2016a) indicated no 
bias, and visually suggested that a suitable model for the empirical distribution of uncertainties 
might consider relative uncertainty (fraction of estimated GPP) as a constant. This conclusion will 
be re-visited based on the new evaluation in TerrA-P, and used to define a Type A uncertainty 
calculation. The two proposed methods to quantify uncertainty will be complementary and act as a 
cross-check on one another. 

4.4. A PRELIMINARY CALIBRATION DATA SET FOR GPP 

The University of Antwerp group has selected from the most recent synthesis data set 
(http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/) 17 flux sites in different biomes that have 
data in the public domain and are characterized by multi-year records and relatively homogeneous 

http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
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vegetation footprints. These sites, tabulated below (Table 3), provide the basis for preliminary 
calibration.  

Table 3: The selected initial calibration set of eddy-covariance flux measurement sites. VEG = IGBP 
vegetation type: EBF = evergreen broadleaf forest, ENF = evergreen needleleaf forest, OSH = open 
shrubland, CRO = cropland, DBF = deciduous broadleaf forest. 

CODE NAME LAT (˚) LONG (˚) ELEV 
(m) 

VEG 

AU-Tum Tumbarumba –35.6566 148.1517 645 EBF 

CA-NS3 UCI-1964 burn site 55.9117 –98.3822 260 ENF 

CA-NS6 UCI-1989 burn site 55.9167 –98.9644 244 OSH 

CA-Obs Saskatchewan – Western Boreal, Mature 
Black Spruce 

53.9872 –105.1178 629 ENF 

DE-Geb Gebesee 51.1001 10.9143 162 CRO 

DE-Hai Hainich 51.0792 10.4530 430 DBF 

DE-Kli Klingenberg 50.8929 13.5225 478 CRO 

FI-Hyy Hyyttiälä 61.8475 24.2950 181 ENF 

FR-Fon Fontainebleau-Barbeau 48.4764 2.7801 103 DBF 

FR-LBr Le Bray (after 28 June 1998) 44.7171 –0.7693 61 ENF 

FR-Pue Puechabon 43.7414 3.5958 270 EBF 

IT-Cpz Castelporziano 41.7052 12.3761 68 EBF 

NL-Loo Loobos 52.1666 5.7436 25 ENF 

US-Ha1 Harvard Forest EMS Tower (HFR1) 42.5378 –72.1715 340 DBF 

US-MMS Morgan Monroe State Forest 39.3232 –86.4131 275 DBF 

US-UMB University of Michigan Biological Station 45.5598 –84.7138 234 DBF 

US-WCr Willow Creek 45.8059 –90.0799 520 DBF 

Approximately 20 additional flux sites have been targeted as having multi-year records and 
relatively homogeneous footprints, but requiring liaison with the flux-site principal investigators, 
for subsequent validation. Validation will later include on the order of 100 additional public-domain 
sites of shorter duration and/or more complex footprints. The inclusion of this larger set (accepting 
there may be issues arising due to the heterogeneous footprints of some sites) is important in 
order to obtain a wider spread of ecosystem types.  

4.5. CALIBRATION RESULTS 

Simulations were set up for each of the 17 calibration sites, using local meteorological 
measurements of daily total incoming shortwave radiation (converted to PPFD using a factor of 
0.49) and monthly mean temperature and vapour pressure (converted to vpd using the standard 
method, using mean daily minimum and maximum temperatures). Annual values of CO2 were 
prescribed. Low-temperature inhibition of photosynthesis was represented in the simplest possible 
way, by setting GPP to zero during periods with subfreezing temperatures. 

The parameters φ0(C3) and φ0(C4) can in principle be calibrated within a certain range. This is 
because (a) there is some natural variation (as well as methodological and measurement 
uncertainties) in their values (Skillman, 2008), and (b) the absolute magnitudes of fAPAR vary 
among remotely sensed products, even if the spatial patterns are similar. φ0(C3) was estimated 
from the comparison of P model estimates with the GPP data by varying its value in the model 

http://sites.fluxdata.org/AU-Tum/
http://sites.fluxdata.org/US-WCr/
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between 0.05 and 0.1125. The optimized value (yielding the smallest sum of RMSE across sites) was 
0.084, only marginally different from the standard value of 0.085 used by Wang et al. (2016a). 
Figure 2 shows the effect of varying φ0(C3) on the sum of RMSE across sites. φ0(C4) was not 
calibrated but should be estimated using data from C4 plant-dominated vegetation, which is not 
represented in the calibration set. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Effect of varying φ0(C3) on the summed daily RMSE between flux-derived and modelled 
GPP at the 17 calibration sites. 

Figure 3 shows the results of data-model comparison in the form of time series of GPP from the 
flux measurements, and from the P model with optimized φ0(C3). Visual agreement and RMSE 
values are generally satisfactory. There are some mismatches, which do not appear to be related to 
vegetation type; for example, there is no indication in this comparison that GPP is systematically 
either under-or overestimated in any one vegetation type. Mismatches include underestimation of 
peak-season GPP by the model at a few sites; and in some sites and years, the simulation of 
positive GPP around the start and/or end of the growing season at times when the flux-derived 
GPP is close to zero.  

The cause of the first problem is currently unknown. The second problem could be due in part to a 
mismatch between the tower footprint and the remote sensing pixel. It may also indicate that the 
simple threshold approach we have adopted to stand for low-temperature inhibition is too simple. 
Both issues will be investigated during later stages of the project. 
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Figure 3: Comparison of flux-derived GPP (grey) and P model-simulated GPP (red) at the calibration 
sites. The dark grey traces represent the mean GPP from the alternative FLUXNET partitioning 
methods; the light grey bands represent the range of GPP. The red traces represent modelled GPP. 

 
 



CHAPTER 5 Validation approach 
 

 
34 

CHAPTER 5 VALIDATION APPROACH 

This chapter describes the validation approach of the products. A two-fold validation will be done: 

(1) The point location products will be validated with in-situ measurements of GPP, and 

where possible against aboveground biomass production (NPP) to assess the 

accuracy and the limitations of the products. 

(2) The global spatial GPP/NPP products are compared against other operational EO 

products (MODIS, C-GLOPS1) to assess how much and where the new products differ 

from the existing ones. 

5.2. VALIDATION METHOD AGAINST IN-SITU DATA 

This validation aims to assess the capability of model simulations to describe carbon dynamics for a 
variety of ecosystems and to identify potential ways to improve these simulations.  More 
specifically we will test how well the simulations: (i) describe annual carbon dynamics for different 
ecosystems (forest, grassland and cropland) and climates (ii) encompass the daily and seasonal 
trends of GPP; (iii) describe interannual variability; (iii) describe the main environmental functions 
controlling GPP and NPP. 

5.2.1. DESCRIPTION OF THE IN SITU DATA 

Model outputs will be evaluated against sites selected from two in-situ databases:  
 

 FLUXNET 2015 database 
For GPP, we will use the FLUXNET 2015 database. The FLUXNET database contains data of 
ecosystem CO2 fluxes obtained with the eddy-covariance technique. This well-established 
technique provides GPP data from the post-processing of the direct measurement of net 
ecosystem CO2 exchange. FLUXNET integrates data from regional networks, international projects 
and field-sites of research institutes and provides a highly standardized data treatment and data 
analysis (including uncertainty estimations) for measuring sites distributed globally. These data 
have been extensively used for the development and evaluation of ecological models at regional or 
global scale (Balzarolo et al 2014). 
The FLUXNET GPP data are well suited to be used as validation product for several reasons: (i) they 
are available at both very high time resolution (half-hourly) and aggregated at longer time step 
(daily to annual), (ii) are available for multiple years (up to >10 years for the most intensively 
studied sites), (iii) typically measure an area of the ecosystem (footprint) comparable to the 
resolution of remote sensed products, (iv) data are provided with uncertainty estimations, and (v) 
sites are available globally and for all types of terrestrial ecosystems (e.g. forests, grasslands, 
croplands, wetlands, tundra). FLUXNET has been established in 1998 (Baldocchi et al 2001) and 
since then techniques have improved and different database version have been produced. In this 
project, we will use the latest version (FLUXNET 2015) and publically available data, for which data 
use is free and open provided that proper acknowledgment is given to site PIs and funding agencies 
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(Tier 1, see http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/ ). About 200-250 GPP site are 
available now. 
 

 Biomass production dataset 
For biomass production, we will use a dataset recently released by the UA partner of this 
consortium (UA, Vicca et al 2012 and Campioli et al 2015). This dataset is best suited for validation 
purposes because (i) it provides quality-controlled data for both aboveground and belowground 
NPP, (ii) it provides standardized uncertainty estimates, (iii) provides ecosystem level data (e.g. 
dominant and codominant species, overstory and understory) compatible with the spatial footprint 
of the FLUXNET 2015 sites, thus comparable to remotely sensed data and (iv) provides NPP data 
paralleled by GPP for the same year of measurements. This dataset is published and has been 
made publically available (Vicca et al 2012 and Campioli et al 2015).  
 
Site selection 
 
Table 4 lists the 17 FLUXNET sites selected as ideal sites for the calibration of GPP model 
(calibration sites). These sites are ideal because they have: 
 

- a long time series (>5 years,  daily time series) with good data quality. GPP data 

quality was checked by following the standardized methodology defined in the 

FLUXNET (Reichstein et al., 2005; Papale et al., 2006) 

- a large homogenous footprint area at least 1 km x 1 km spatial resolution to 

ensures reliable comparisons between in-situ and remotely sensed data 

Additional sites for calibration and validation of products will be selected from FLUXNET 2015 
database, Tier 1 sites. For validation NPP products, sites where both GPP and NPP estimates are 
available will be selected from biomass production dataset (Campioli et al 2015 and Vicca et al 
2012). 

Table 4: Coordinates and characteristics of the FLUXNET 2015 sites selected for the validation of the 
model outputs. ENF—Evergreen Needleleaf Forest; EBF—Evergreen Broadleaf Forest; DBF—
Deciduous Broadleaf Forest; and CRO—Cropland. 

SITE_I
D 

SITE_NAME 
2015_DATA_S

TART 
2015_DATA

_END 
LOCATION

_LAT 
LOCATION_L

ONG 
LOCATION_

ELEV 
IGB

P 

AU-
Tum Tumbarumba 

Tier1: 2001 Tier1: 2014 
-35.6566 148.1517 

 

EB
F 

CA-
NS3 UCI-1964 burn site Tier1: 2001 Tier1: 2005 55.9117 -98.3822 260 

EN
F 

CA-
NS6 UCI-1989 burn site Tier1: 2001 Tier1: 2005 55.9167 -98.9644 244 

OS
H 

CA-
Obs 

Saskatchewan - Western Boreal, 
Mature Black Spruce Tier2: 1997 Tier2: 2010 53.9872 -105.118 628.94 

EN
F 

DE-
Geb Gebesee Tier1: 2001 Tier1: 2014 51.1001 10.9143 161.5 

CR
O 

DE-
Hai Hainich Tier1: 2000 Tier1: 2012 51.0792 10.453 430 

DB
F 

DE-Kli Klingenberg Tier1: 2004 Tier1: 2014 50.8929 13.5225 478 
CR
O 

FI-Hyy Hyytiala Tier1: 1996 Tier1: 2014 61.8475 24.295 181 
EN
F 

FR-
Fon Fontainebleau-Barbeau Tier1: 2005 Tier1: 2014 48.4764 2.7801 103 

DB
F 

FR-LBr Le Bray (after 6/28/1998) Tier1: 1996 Tier1: 2008 44.7171 -0.7693 61 EN

http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
http://sites.fluxdata.org/AU-Tum/
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F 

FR-
Pue Puechabon Tier1: 2000 Tier1: 2014 43.7414 3.5958 270 

EB
F 

IT-Cpz Castelporziano Tier1: 1997 Tier1: 2009 41.7052 12.3761 68 
EB
F 

NL-
Loo Loobos Tier1: 1996 Tier1: 2013 52.1666 5.7436 25 

EN
F 

US-
Ha1 Harvard Forest EMS Tower (HFR1) Tier1: 1991 Tier1: 2012 42.5378 -72.1715 340 

DB
F 

US-
MMS Morgan Monroe State Forest Tier1: 1999 Tier1: 2014 39.3232 -86.4131 275 

DB
F 

US-
UMB Univ. of Mich. Biological Station Tier1: 2000 Tier1: 2014 45.5598 -84.7138 234 

DB
F 

US-
WCr Willow Creek  

Tier1: 1999 Tier1: 2014 
45.8059 -90.0799 520 

DB
F 

5.2.2. VALIDATION METHOD 

Validation will be performed at different temporal resolution but always at high spatial resolution 
i.e. at site level (we will not perform landscape or regional validations as this will require up-scaling 
of in-situ data with large propagation of uncertainty).  
 
For GPP, the following metrics will be tested: 
 

1. Between-sites differences in average annual GPP (modeled GPP against in-situ GPP)  

2. Interannual variation in modeled GPP against in-situ observation of GPP (only for 

the years for which the remote sensed product matches observations) 

3. Seasonal variability in GPP: daily (considering mean or cumulated values over 24 

hours), 10-days and monthly time scales 

For NPP, test 1 and 2 will be done, while tests 3 will not be possible because NPP is estimated 

annually. 

 
For the comparison between modeled and observed data we will use various statistical approaches 
(depending on the exact objective). For example, the following tests can be applied to evaluate 
model performance at annual scale in relation to the uncertainty of in-situ data: (i) paired-t-test 
and Wilcoxon signed-rank tests between pairs of modeled versus observed variables, (ii) ordinary 
least squares and major axis regression (major-axis regressions are best suited to evaluate the 
performance of methodologies with uncertainty of similar magnitude), (iii) regressions weighted by 
the inverse of the data uncertainty (so that sites with larger uncertainty have a lower weight than 
sites with smaller uncertainty). To verify that errors are not systematically related to environmental 
and ecosystem properties, the differences between modeled and ground data will be related to a 
large set of site variables (e.g. MAP, MAT, LAI, biomes types). To ensure that the impact of each 
given site is independent of the flux magnitude, these analyses will be performed using both 
absolute [e.g. for GPP: (GPPM – GPPO)] and relative difference between the modelled and observed 
data [e.g. for GPP: (GPPM – GPPO)/((GPPM + GPPO)/2)]. In addition to these tests, the performance in 
predicting seasonal GPP (e.g. daily, monthly GPP) can be verified using the correlation coefficient 
(R2), efficiency (E), root mean square error (RMSE) and bias as previously done in Balzarolo et al 
2014. This last approach was also used in geoland2 GMES Land Monitoring Core Service for the 
validation of the Land Surface Models against in-situ carbon fluxes. Furthermore, the model 
capability in predicting seasonal changes in GPP could be tested by applying a spike detection 
method as proposed in Vicca et al 2016. 

http://sites.fluxdata.org/US-WCr/
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5.3. BENCHMARK METHOD TO OTHER DATA SETS 

5.3.1. REFERENCE DATA SETS 

At global scale a comparison will be done with two operational EO GPP/NPP products: 
 

 C-GLOPS1 Dry Matter Production (DMP) product 
This DMP is the agromic equivalent of NPP, calculated at 10-daily time steps and expressed in kg 
DM/ha/day. The DMP is a product generated by a Monteith Light Use Efficiency (LUE) model first 
implemented by Veroustraete (1994) but modified and improved in the MARSOP and Copernicus 
Global Land Service project to run on SPOT-VGT/PROBA-V imagery and ECMWF meteorological 
data. Within C-GLOPS, the product has been extensively validated against in-situ, MODIS and other 
modelled datasets of GPP and NPP. As the DMP is a VITO in-house product, we are well familiar 
with its algorithm and quality. The ATBD and validation report of the DMP are available through the 
C-GLOPS website http://land.copernicus.eu. The current online version 1 is based on 1 km SPOT-
VGT and PROBA-V fAPAR data derived from the MARSOP project. In the meantime, a second 
version of the DMP is in development and has been validated. Besides a number of algorithmic 
changes, this version is based on an improved dataset of SPOT-VGT and PROBA-V fAPAR. This 
product will be made publically available in the end of May 2017, but currently only in 
“demonstration” mode. Hence, both products will be to compare against the P-model output.    
 

 MODIS GPP (MOD17A2) and NPP (MOD17A3) 
These products are described in detail by Running et al. (1999), Heinsch et al. (2003), Zhao et al. 
(2005) is also a variant of the satellite based Monteith approach. The GPP, available at 8-daily 
timesteps, is reduced at yearly base with the maintenance and growth respiration linking daily 
biomass and annual growth of plant tissues to the satellite-derived estimates of leaf area index 
(LAI) to generate yearly NPP maps. The MYD17A3H Version 6 product, recently released by MODIS, 
provides information about annual (yearly) Net Primary Production at 500 meter pixel resolution. 
Annual NPP is derived from the sum of the 45, 8-day Net Photosynthesis (PSN) products 
(MYD17A2H) from the given year. The PSN value is the difference of the GPP and the Maintenance 
Respiration (MR) (GPP-MR). The MODIS products can be accessed and downloaded through the 
Google Earth Engine platform.  

5.3.2. METHODS 

The methods for the benchmarking of the different EO-derived vegetation production data sets are 
based on guidelines, protocols and metrics defined by the Land Product Validation (LPV) group of 
the Committee on Earth Observation Satellite (CEOS) for the validation of satellite-derived land 
products. The following aspects will be evaluated. 
 

(1) Product completeness: the missing values or pixels flagged as invalid over land were 

quantified, overall and over different biomes. An aggregated version of the ESA CCI 

land cover map will used for this purpose. 

(2) Spatial consistency analysis: 

 Spatial distribution of the GPP/NPP values: global maps of metrics expressing the 

similarity and difference between different global GPP/NPP time series will be 

computed. The metrics include the Root Mean Squared Error (RMSE). 

http://land.copernicus.eu/
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 Magnitude of the retrievals: global yearly averages will be calculated for GPP and 

NPP. 

(3) Global statistical analysis: 

 Histograms of bias: histograms of residuals between products. 

 Distribution per biome type: statistical distributions of GPP/NPP values and 

residuals, computed over biomes for the different data sets. An aggregated version 

of the ESA CCI land cover map will used for this purpose. 

 Global statistics: Scatterplots between the different datasets will be produced at a 

global scale and per biome. Metrics (e.g. coefficient of determination, agreement 

coefficient, orthogonal regression) among different data sets are computed per 

biome. 

(4) Temporal consistency analysis 

 Temporal variation: Statistical metrics among different data sets are computed per 

scene to evaluate the time evolution of the metrics. 
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ANNEX A: PROTOTYPE CODE FOR APPLICATION WITH MERIS GVI AND METEO 
DATA 

The model runs by using the following scripts:  

1. Start_model 
2. Main_model 
3. Run_site 
4. Run_pmod_site 
5. Calc_gpp 
6. Calc_m 

 
The first four scripts control the flow of data inputs and outputs, while the final two perform the 
calculations. For each site, daily vpd and temperature, monthly fAPAR and annual CO2 are used to 
calculate GPP. The Python codes to calculate GPP and m in equation (3), and the constants used for 
the calculations, are shown below. 
 
------------------------------------- GPP calc ------------------------------------ 
 
######## Import modules######### 
 
import numpy as np 
from constants import c_star 
from m_calc import M_CALC 
 
############## 
# Main program 
############## 
 
class GPP_CALC: 
    """ 
    Name: GPP_CALC 
    Features: Calculates GPP for given data 
    """ 
    def __init__(self): 
            """ 
            Name:     GPP_CALC.__init__ 
            Input:    None. 
            Features: Initialise class variables 
                       
            """ 
            self.gpp = None 
            self.old_frac = None 
            self.gpp_old_eq = None 
           
          #        ### Class Function Definitions #### 
         
    def run_grid(self, ppfd, this_fapar, temp, aCO2, alpha, elv, beta, phi_0, absG, tMax = False, tMin 
= False, vap = False, vpd = False): 
            """ 
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            Name: GPP_CALC.run_grid 
            Input: - float, ambient CO2 (aCO2) ppm 
                   - float, faparn/a 
                   - float, temperature (temp) C 
                   - float, elevation (elv) m 
                   - float, monhtly maximum daily temp (tMax) C 
                   - float, monthly minimum daily tamperature (tMin) C 
                   - float, vapour pressure (vap) Pa 
                   - float, vapour pressure defict (vpd) Pa This is data input if running at site scale, but 
calcuated at global 
            Outputs: - float, GPP 
                    - float, C13 discrimination 
            Depends: - SPLASH --> EVAP-->alpha 
                     - SPLASH --> PPFD 
                      
            """ 
             
            if tMax is not False: 
              this_tMax = tMax 
            else: 
               this_tMax = False 
                
            if tMin is not False: 
              this_tMin = tMin 
            else: 
               this_tMin = False 
                
            if vap is not False: 
              this_vap = vap 
            else: 
               this_vap = False 
                
            if vpd is not False: 
              this_vpd = vpd 
            else: 
               this_vpd = False 
                
          
            
            my_M=M_CALC() 
            my_M.run_grid(temp,aCO2,elv,beta,this_tMax,this_tMin,this_vap,this_vpd)  
            self.M = my_M.m  
            self.GAMMA_ST = my_M.GSTAR 
            self.K1_ = my_M.K_1 
            self.ETA_ST = my_M.ESTAR 
            self.vpd_Pa_ = my_M.vpd_Pa 
            self.m_frac = np.sqrt(1.0 - ((c_star / self.M) ** ( 2.0 / 3.0 ))) 
             
             
            # GPP is zero for monthly mean temperatures below 0C 
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            self.lue = phi_0 *\ 
                       self.M * \ 
                       self.m_frac *\ 
                       (alpha ** (1.0/4.0)) 
                        
            if type(temp) ==np.float64: 
                if temp < 0.0: 
                    self.lue = 0.0 
            else: 
                 neg_t = np.where(temp < 0.0) 
                 self.lue[neg_t] = 0.0 
             
            self.gpp = self.lue * \ 
                       absG * \ 
                       ppfd * \ 
                       this_fapar  
                      
            
         
 
 
 
 
 
 
 
 
 
 
                       
                                     
-------------------------------------- M calc ------------------------------------ 
import numpy as np 
 
import os 
import sys 
 
CURRENT_DIR = os.path.abspath(os.curdir) 
PARENT_DIR = os.path.abspath(CURRENT_DIR + "/../")  
         
evap_path = os.path.join(PARENT_DIR, 'SPLASH/working/py_version') # the SPLASH code location 
sys.path.append(evap_path)    
 
 
from evap import EVAP 
 
from constants import gamma_25, t_25, Ha, R, eta_const, kco, kPo 
 
class M_CALC: 
    """ 
    Name: M_CALC 
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    Features: Calculates M for GPP 
    """ 
     
    def __init__(self): 
            """ 
            Name:     M_CALC.__init__ 
            Input:    - float, latitude, degrees (lat) 
                      - float, latitude, degrees (lon)   
                       
            """ 
            self.m = None 
            self.vpd_Pa = None 
         
        #### Class Function dEfinitions #### 
         
    def run_grid(self, temp, aCO2, elv, beta, tMax, tMin, vap, vpd): 
            """ 
            Name: M_CALC.run 
            Input: - float, ambient CO2 (aCO2) 
            Outputs: - float, M (for GPP claucation) 
            Depends: - GAMMA_STAR 
                     - ETA_STAR 
                     - VPD_CALC 
                     - K1_CALC 
            """ 
            evap = EVAP(25.0, elv) 
            self.patm = evap.elv2pres(elv) 
             
             
            pp_CO2 = aCO2 * 1E-6 * self.patm #* 101.325 * 1000 # CO2 in Pa--> partial pressure for 
average atmospheroc pressure  
                                                   
                        
            if type(temp) == np.float64: 
                kelv2cel = 273.15 
            else: 
                kelv2cel = np.tile(273.15, (pp_CO2.shape[0], pp_CO2.shape[1])) 
                 
                 
            # Calculate VPD is not given as data input 
            if vpd is False: 
                 this_vpd = self.calc_vpd(tMax, tMin, vap) 
            else: 
                 this_vpd = vpd 
                  
                                  
            k_temp = temp + kelv2cel  #temp in kelvin 
            k_temp25 = 25.0 + kelv2cel 
            
             
            m_calc = (pp_CO2 - self.gamma_star(k_temp)) / \ 
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                     (pp_CO2 + (2 * self.gamma_star(k_temp)) + \ 
                     (3 * self.gamma_star(k_temp)) * \ 
                     np.sqrt(1.6 * self.eta_star(temp, self.patm, 25.0, kPo, elv) * \ 
                     this_vpd * \ 
                     (beta ** -1.0) * \ 
                     ((self.k1(k_temp, elv, self.patm) + self.gamma_star(k_temp)) ** -1.0)))  
                  
           
            self.vpd_Pa = this_vpd    
            self.m = m_calc 
            return m_calc 
             
    def gamma_star(self,k_temp): 
            """ 
            Name: GAMMA_STAR.run 
            Input: -Float, Air temp (Tk) Given in degC, need kelvin 
            Output: - Float, Gamma* 
            """ 
            ttg=((k_temp - t_25) * Ha) / (R * k_temp * t_25) 
            gs=gamma_25 * np.exp(ttg) 
            self.GSTAR = gs 
             
            return gs 
         
    def eta_star(self,temp, patm, temp25, kPo, elv): 
            """ 
            Name: ETA_STAR.run 
            Input: -Float, Air temp (Tk) 
            Output: - Float, ETA* 
            """ 
            # Calculated as eta/eta25  
            # viscosity correction factor = viscosity( temp, press )/viscosity( 25 degC, 1013.25 Pa)  
             
            #es = np.exp(eta_const * (k_temp - t_25)) 
             
            evap = EVAP(25.0, elv) 
             
            self.ns = evap.viscosity_h2o(temp, patm) 
            self.ns25 = evap.viscosity_h2o(temp25, kPo) 
             
            es = self.ns/self.ns25 
            self.ESTAR = es 
#            print es 
            return es 
             
    def calc_vpd(self,tMax, tMin, vap): 
            """ 
            Name: VPD_CALC.run 
            Input: -Float, monlty average daily maximum temp (Tmax) deg C 
                   -Float, monlty average daily minimum temp (Tmin) deg C 
                   -Float, monlty average vapour pressure temp (vap) hPa (1 Pa = 0.01 hPa) 
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                   Output: - Float, D (jn equation) 
            """ 
             
            tMaxMin=(8.635 * (tMax + tMin))/(0.5 * (tMax + tMin) + 237.3) 
         
            vpd_out=(0.611 * np.exp(tMaxMin) - (0.10 * vap)) * 1000 # kPa to Pa (units for m are all Pa) 
                    
            return vpd_out 
             
    def k1(self, k_temp, elv, patm): 
             """ 
             Name:     K0_CALC.__init__ 
             Input:    - float, latitude, degrees (lat) 
                      - float, latitude, degrees (lon)   
                      -Float, monlty average temperature (Tk) 
                      -Float, elevation at grid square (elv) 
                      Output: - Float, K1 
            Depends: - Kc 
                     - P0 
                     - K0 
             """ 
             k1_out = self.kc(k_temp) * (1 + ( self.p0(elv, self.patm) / self.k0(k_temp))) 
             self.K_1 = k1_out 
             return k1_out 
             
    def kc(self,k_temp): 
     
            """ 
            Name: k1_calc.kc 
            Input: -Float, monlty average temperature (Tk) 
                   - Const = 79.430 kJ mol-1 = energy of activation for carboxylation 
            Output: - Float, Kc 
            """ 
             
            dhatKc = 79430 #J/mol 
            kc25 = 39.97 # Pa at 25 deg C and 98.716KPa 
             
            tempFrac=((k_temp - t_25) * dhatKc) / (R * k_temp * t_25) 
             
            Kc_out = kc25 * np.exp(tempFrac) 
         
            return Kc_out 
         
    def p0(self,elv, patm): 
            """ 
            Name: k1_calc.po 
            Input: -Float, elevation at grid point 
            Output: - Float, P0. O2 partial pressure 
            """ 
             
            #P0_out=21000  * np.exp( - 0.114 * (elv * 1E-3)) 



Annex A  
 

 

            P0_out = kco * (1e-6) * patm 
             
            return P0_out 
         
    def k0(self,k_temp): 
            """ 
            Name: K0_CALC.run 
            Input: -Float, monlty average temperature (Tk) 
                  - Const = 36.380 kJ mol-1 = energy of activation for oxygenation 
            Output: - Float, K1 
            """ 
             
            dhatK0 = 36380 # J/mol 
            k025 = 27480 # Pa, at 25 deg C and 98.716KPa 
             
            tempFracK0=((k_temp - t_25) * dhatK0) / (R * k_temp * t_25) 
             
            K0_out=k025 * np.exp(tempFracK0) 
             
            return K0_out 
               
    def print_vals(self): 
             
            print " m: %0.10f" % (self.m) 
         
 
 
------------------------------------ constants ------------------------------------ 
 
 
gamma_25 = 4.220 # Pa  Gamma* at 25C 
t_25 = 298.15 # K 25C in Kelvin 
Ha = 37830.0 #J/mol Activiation energy for Gamma* 
R = 8.3145 # J/mol/K Universal gas constant 
eta_const = -0.0227 # No unit  Constant for viscosity of water relative to its value at 25C (See Wang 
2015) 
kco =  2.09476e5 #ppm. US standard pressure. (From Beni's code - Ref Bernacchi et al 2001) 
kPo = 101325.0  # Standard atmopsheric pressure (Pa), Allen 1973 
 
Ho = 36.38 # Bernacchi 2001 energy of activation for oxygenation 
Hc = 79.43 # Bernacchi 2001 energy of activation for carboxylation 
 
c_star = 0.41 # unit of carbon cost for maintenance of electron transport capacity (obs Jmax:Vc 
max) 
a_hat = 4.4 # Standard value for c13 discrimination - diffusion component (Wang 2015 Eq s42) 
b_hat = 27.0 # Standard value for c13 discrimination - biochemical component (Wang 2015 Eq s42) 
 
c_molmass =  12.0107  # g C / mol C 
 
C3_phi0 = 0.084 * c_molmass # # mol/mol # gC/mol Intrinisic quantum yield of photosynthesis for 
C3 plants 
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C4_phi0 = 0.055 * c_molmass # # mol/mol # gC/mol Intrinisic quantum yield of photosynthesis for 
C4 plants 
 
-------------------------------------------------------------------------------------------------------------------------- 
 
Additional functions from the SPLASH model (doi:10.5194/gmd-10-689-2017, https: 
//bitbucket.org/labprentice/splash) are used in the calculation of m (with constants listed below). 
 
-------------------------------------------------------------------------------------------------------------------------- 
To convert CO2 form ppm to Pa, the following function is used: 
Evap.elv2pres 
 
def elv2pres(self, z): 
        """ 
        Name:     EVAP.elv2pres 
        Input:    float, elevation above sea level (z), m 
        Output:   float, atmospheric pressure, Pa 
        Features: Calculates atm. pressure for a given elevation 
        Depends:  Global constants 
                  - kPo 
                  - kTo 
                  - kL 
                  - kMa 
                  - kG 
                  - kR 
        Ref:      Allen et al. (1998) 
        """ 
        self.logger.debug("estimating atmospheric pressure at %f m", numpy.nanmean(z)) 
        p = kPo*(1.0 - kL*z/kTo)**(kG*kMa/(kR*kL)) 
return p 
-------------------------------------------------------------------------------------------------------------------------- 
In eta_star, the following function is used: 
Evap.viscosity_h20 
 
def viscosity_h2o(self, tc, p): 
        """ 
        Name:     LUE.viscosity_h2o 
        Input:    - float, ambient temperature (tc), degrees C 
                  - float, ambient pressure (p), Pa 
        Return:   float, viscosity of water (mu), Pa s 
        Features: Calculates viscosity of water at a given temperature and 
                  pressure. 
        Depends:  density_h2o 
        Ref:      Huber, M. L., R. A. Perkins, A. Laesecke, D. G. Friend, J. V. 
                  Sengers, M. J. Assael, ..., K. Miyagawa (2009) New 
                  international formulation for the viscosity of H2O, J. Phys. 
                  Chem. Ref. Data, Vol. 38(2), pp. 101-125. 
        """ 
        # Define reference temperature, density, and pressure values: 
        tk_ast = 647.096      # Kelvin 
        rho_ast = 322.0       # kg/m^3 
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        mu_ast = (1e-6)       # Pa s 
 
        # Get the density of water, kg/m^3 
        rho = self.density_h2o(tc, p) 
 
        # Calculate dimensionless parameters: 
        tbar = (tc + 273.15)/tk_ast 
        tbarx = tbar**(0.5) 
        tbar2 = tbar**2 
        tbar3 = tbar**3 
        rbar = rho/rho_ast 
 
        # Calculate mu0 (Eq. 11 & Table 2, Huber et al., 2009): 
        mu0 = 1.67752 
        mu0 += 2.20462/tbar 
        mu0 += 0.6366564/tbar2 
        mu0 += -0.241605/tbar3 
        mu0 = 1e2*tbarx/mu0 
 
        # Create Table 3, Huber et al. (2009): 
        hj0 = (0.520094, 0.0850895, -1.08374, -0.289555, 0., 0.) 
        hj1 = (0.222531, 0.999115, 1.88797, 1.26613, 0., 0.120573) 
        hj2 = (-0.281378, -0.906851, -0.772479, -0.489837, -0.257040, 0.) 
        hj3 = (0.161913,  0.257399, 0., 0., 0., 0.) 
        hj4 = (-0.0325372, 0., 0., 0.0698452, 0., 0.) 
        hj5 = (0., 0., 0., 0., 0.00872102, 0.) 
        hj6 = (0., 0., 0., -0.00435673, 0., -0.000593264) 
        h = hj0 + hj1 + hj2 + hj3 + hj4 + hj5 + hj6 
        h_array = numpy.reshape(numpy.array(h), (7, 6)) 
 
        # Calculate mu1 (Eq. 12 & Table 3, Huber et al., 2009): 
        mu1 = 0. 
        ctbar = (1./tbar) - 1. 
        for i in range(6): 
            coef1 = numpy.power(ctbar, i) 
            coef2 = 0. 
            for j in range(7): 
                coef2 += h_array[j][i]*numpy.power((rbar - 1.), j) 
            mu1 += coef1*coef2 
        mu1 = numpy.exp(rbar*mu1) 
 
        # Calculate mu_bar (Eq. 2, Huber et al., 2009) 
        #   assumes mu2 = 1 
        mu_bar = mu0*mu1 
 
        # Calculate mu (Eq. 1, Huber et al., 2009) 
        mu = mu_bar*mu_ast    # Pa s 
 
        return mu 
-------------------------------------------------------------------------------------------------------------------------- 
where desnsity_h20: 
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def density_h2o(self, tc, p): 
        """ 
        Name:     EVAP.density_h2o 
        Input:    - float, air temperature (tc), degrees C 
                  - float, atmospheric pressure (p), Pa 
        Output:   float, density of water, kg/m^3 
        Features: Calculates density of water at a given temperature and 
                  pressure 
        Ref:      Chen et al. (1977) 
        """ 
        # self.logger.debug( 
        #     ("calculating density of water at temperature %f Celcius and " 
        #      "pressure %f Pa") % (tc, p)) 
 
        # Calculate density at 1 atm (kg/m^3): 
        po = 0.99983952 
        po += (6.788260e-5)*tc 
        po += -(9.08659e-6)*tc*tc 
        po += (1.022130e-7)*tc*tc*tc 
        po += -(1.35439e-9)*tc*tc*tc*tc 
        po += (1.471150e-11)*tc*tc*tc*tc*tc 
        po += -(1.11663e-13)*tc*tc*tc*tc*tc*tc 
        po += (5.044070e-16)*tc*tc*tc*tc*tc*tc*tc 
        po += -(1.00659e-18)*tc*tc*tc*tc*tc*tc*tc*tc 
        # self.logger.debug("water density at 1 atm calculated as %f kg/m^3", po) 
 
        # Calculate bulk modulus at 1 atm (bar): 
        ko = 19652.17 
        ko += 148.1830*tc 
        ko += -2.29995*tc*tc 
        ko += 0.01281*tc*tc*tc 
        ko += -(4.91564e-5)*tc*tc*tc*tc 
        ko += (1.035530e-7)*tc*tc*tc*tc*tc 
        # self.logger.debug("bulk modulus at 1 atm calculated as %f bar", ko) 
 
        # Calculate temperature dependent coefficients: 
        ca = 3.26138 
        ca += (5.223e-4)*tc 
        ca += (1.324e-4)*tc*tc 
        ca += -(7.655e-7)*tc*tc*tc 
        ca += (8.584e-10)*tc*tc*tc*tc 
        # self.logger.debug("temperature coef, Ca, calculated as %f", ca) 
 
        cb = (7.2061e-5) 
        cb += -(5.8948e-6)*tc 
        cb += (8.69900e-8)*tc*tc 
        cb += -(1.0100e-9)*tc*tc*tc 
        cb += (4.3220e-12)*tc*tc*tc*tc 
        # self.logger.debug("temperature coef, Cb, calculated as %f bar^-1", cb) 
 
        # Convert atmospheric pressure to bar (1 bar = 100000 Pa) 
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        pbar = (1.0e-5)*p 
        # self.logger.debug("atmospheric pressure calculated as %f bar", pbar) 
 
        pw = (ko + ca*pbar + cb*pbar**2.0) 
        pw /= (ko + ca*pbar + cb*pbar**2.0 - pbar) 
        pw *= (1e3)*po 
        return pw 
 
-------------------------------------------------------------------------------------------------------------------------- 
 constants 
kG = 9.80665     # gravitational acceleration, m/s^2 (Allen, 1973) 
kL = 0.0065      # temperature lapse rate, K/m (Allen, 1973) 
kMa = 0.028963   # molecular weight of dry air, kg/mol (Tsilingiris, 2008) 
kPo = 101325     # standard atmosphere, Pa (Allen, 1973) 
kR = 8.31447     # universal gas constant, J/mol/K (Moldover et al., 1988) 
kTo = 298.15     # base temperature, K (Berberan-Santos et al., 1997) 
-------------------------------------------------------------------------------------------------------------------------- 
 


